PREREOUISITES FOR CALCULUS (المتطلبات الاساسبة) للتفاضل والتكامل)

Sets and Intervals (المجموعات والفترات)

DEFINITIONS:

Set: is a collection of things under certain conditions.
Example 1:

$$
\mathrm{A}=\{1,3,5,8,10\} ;
$$

A is a set, $1,3,5,8,10$ are elements.

Real Numbers (\mathbf{R}): is a set of all rational and irrational numbers. $R=\{-\infty,+\infty\}$,

Integer Numbers (I): a set of all irrational numbers.
$I=\{-\infty,---,-3,-2,-1,0,1,2,3,---,+\infty\}$ negative and positive numbers only.

Natural Numbers (\mathbf{N}): consist of zero and positive integer numbers only.
$\mathrm{N}=\{0,1,2,3,---,+\infty\}$

Intervals: is a set of all real numbers between two points on the real number line. (it is a subset of real numbers)

1. Open interval: is a set of all real numbers between $A \& B$ excluded (A\&B are not elements in the set). $\{x: A<x<B\}$ or (A, B).

2. Closed interval: is a set of all real numbers between $A \& B$ included ($A \& B$ are elements in the set). $\{\mathrm{x}: \mathrm{A} \leq \mathrm{x} \leq \mathrm{B}\}$ or $[\mathrm{A}, \mathrm{B}]$.
$-\infty \longleftarrow \mathrm{A}[\mathrm{X}] \mathrm{B} \longrightarrow+\infty$
3. Half-Open interval (Half-Close): is a set of all real numbers between A \& B with one of the end-points as an element in the set.
a) $(\mathrm{A}, \mathrm{B}]=\{\mathrm{x}: \mathrm{A}<\mathrm{x} \leq \mathrm{B}\}$
b) $[\mathrm{A}, \mathrm{B})=\{\mathrm{x}: \mathrm{A} \leq \mathrm{x}<\mathrm{B}\}$

المادة: الرياضيات
المرحلة: اوراضل
التدريسي : م.د رياض حامد
جامعة المستقبل
كلية الهيندسة والتقنيات الهيندسة
تقنيات الوقود والطاقة

TABLE 1.1 Types of intervals					
	Notation	Set description	Type		
Finite:	(a, b)	$\{x \mid a<x<b\}$	Open	a	b
	[a, b]	$\{x \mid a \leq x \leq b\}$	Closed	a	b
	[a, b)	$\{x \mid a \leq x<b\}$	Half-open	a	b
	(a, b]	$\{x \mid a<x \leq b\}$	Half-open	a	b
Infinite:	(a, ∞)	$\{x \mid x>a\}$	Open	a	
	$[a, \infty)$	$\{x \mid x \geq a\}$	Closed	a	
	$(-\infty, b)$	$\{x \mid x<b\}$	Open		b
	$(-\infty, b]$	$\{x \mid x \leq b\}$	Closed		b
	$(-\infty, \infty)$	\mathbb{R} (set of all real numbers)	Both open and closed		

Coordinate in the Plane (الاحداثّاتّ فى (الثقاغ او المستوى)

Each point in the plane can be represented with a pair of real numbers (a, b), the number a is the horizontal distance from the origin to point P , while b is the vertical distance from the origin to point P. The origin divides the x -axis into positive x axis to the right and the negative x -axis to the left, also, the origin divides the y-axis into positive y-axis upward and the negative x -axis downward. The axes divide the plane into four regions called quadrants.

Distance between Points and (Mid-Point Formula):

Distance between points in the plane is calculated with a formula that comes from Pythagorean Theorem:

Distance Formula for Points in the Plane

The distance between $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$

$$
\mathbf{d}=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

and the mid-point formula:

$$
x_{0}=\frac{x_{1}+x_{2}}{2}, y_{0}=\frac{y_{1}+y_{2}}{2}
$$

Example 2: find the distance between $\mathbf{P}(\mathbf{- 1 , 2})$ and $\mathbf{Q}(\mathbf{3}, \mathbf{4})$ and find the midpoint:
Sol.:

$$
\begin{gathered}
\mathrm{d}=\sqrt{(\Delta \mathrm{x})^{2}+(\Delta \mathrm{y})^{2}}=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}} \\
=\sqrt{(3-(-1))^{2}+(4-2)^{2}}=\sqrt{20}=2 \sqrt{5} \\
\mathrm{x}_{0}=\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \mathrm{x}_{0}=\frac{-1+3}{2}=1 \text { and } \mathrm{y}_{0}=\frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}, \mathrm{y}_{0}=\frac{2+4}{2}=3 .
\end{gathered}
$$

Example 3: find the distance between $\mathbf{R}(\mathbf{2}, \mathbf{- 3})$ and $\mathbf{S}(\mathbf{6}, \mathbf{1})$ and find the midpoint:
Sol.:

$$
\begin{gathered}
\mathrm{d}=\sqrt{(\Delta \mathrm{x})^{2}+(\Delta \mathrm{y})^{2}}=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}} \\
=\sqrt{(6-2)^{2}+(1-(-3))^{2}}=\sqrt{16+16}=\sqrt{32}=2 \sqrt{8} \\
\mathrm{x}_{0}=\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \mathrm{x}_{0}=\frac{2+6}{2}=4 \text { and } \mathrm{y}_{0}=\frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}, y_{0}=\frac{-3+1}{2}=-1 .
\end{gathered}
$$

Slope and Equation of Line

- Slope (الميل): The constant

$$
\mathrm{m}=\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}
$$

is the slope of non-vertical line $P_{1} P_{2}$.
Note1: Horizontal line have $(\mathbf{m}=\mathbf{0})(\Delta y=0)$, and the vertical line has no slope or the slope of vertical line is undefined ($\Delta \mathbf{x}=0$).
Note2: Parallel lines have the same slope In the the lines are parallel then $(\mathbf{m} \mathbf{1}=\mathbf{m} \mathbf{2})$. Note3: If two non-vertical lines L1 and L2 are perpendicular, their slopes $\mathbf{m 1}$ and $\mathbf{m} \mathbf{2}$ satisfy

$$
m 1 * m 2=-1
$$

so each slope is the negative reciprocal of the other.

$$
m_{1}=\frac{-1}{m_{2}} \text { and } m_{2}=\frac{-1}{m_{1}}
$$

Example 4: Find the slope of the straight line through the two points $\mathbf{P}(\mathbf{3}, \mathbf{2})$ and $\mathbf{Q}(4,4)$:
Sol.:

$$
\mathrm{m}=\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\frac{4-2}{4-3}=2 .
$$

Lecture (1)

* Point-Slope Equation:

We can write an equation for a non-vertical straight line L if we know its slope m and the coordinate of one point $P_{1}\left(x_{1}, y_{1}\right)$ on it. If $P(x, y)$ is any other point on L, then we can use two points P_{1} and P to compute the slope,
$\mathrm{m}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{x}-\mathrm{x}_{1}}$

so that $\quad y-y_{1}=m\left(x-x_{1}\right)$
or $\quad y=y_{1}+m\left(x-x_{1}\right)$

The equation $\quad y=y_{1}+m\left(x-x_{1}\right)$

is the point-slope equation of the line that passes through the point $P_{1}\left(x_{1}, y_{1}\right)$ and has slope m.

Example 5: write an equation for the line pass through the point $(\mathbf{2}, \mathbf{3})$ with slope (-3/2).
Sol.: we substitute $\mathrm{x}_{1}=2, \mathrm{y}_{1}=3$, and $\mathrm{m}=-3 / 2$ into the point-slope equation and obtain

$$
\begin{gathered}
y=y_{1}+m\left(x-x_{1}\right) \\
y=3+\frac{-3}{2}(x-2) \\
y=-\frac{3}{2} x+6 .
\end{gathered}
$$

المادة: الرياضيات

كلية اليندسة والتقنيات اللـي
تقنيات الوقود والطاقة

Example 6: A line pass through two points: write an equation for the line through
$(-2,-1)$ and $(\mathbf{3}, 4)$
Sol.: The line's slope is

$$
\mathrm{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\frac{-1-4}{-2-3}=\frac{-5}{-5}=1 .
$$

We can use this slope with either of the two given points in the point-slope equation;

$$
\begin{aligned}
& \text { With }(\mathrm{x} 1, \mathrm{y} 1)=(-2,-1) \\
& \begin{array}{c}
\mathrm{y}=-1+1 .(x-(-2)) \\
y=-1+x+2 \\
y=x+1
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\text { With }(x 2, y 2)=(3,4) \\
\begin{array}{c}
y=4+1 .(x-3) \\
y=4+x-3 \\
y=x+1
\end{array}
\end{gathered}
$$

Note: The equation:

$$
\mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

is called the slope-intercept equation of the line with slope m and y intercept b

Note: The general form of straight line equation is

$$
A x+B y+C=0
$$

Example 7: finding the slope and y-Intercept for the line $8 x+5 y=20$.
Sol.: solve the equation for y to put it in slope-intercept form :

$$
\begin{gathered}
8 \mathrm{x}+5 \mathrm{y}=20 \\
5 \mathrm{y}=-8 \mathrm{x}+20 \\
\mathrm{y}=-8 / 5 \mathrm{x}+4 . \\
\text { The slope } \mathbf{m}=-\mathbf{8} / \mathbf{5} \text {. the } \mathrm{y} \text {-intercept is } \mathbf{b}=\mathbf{4} \text {. }
\end{gathered}
$$

المادة: الرياضيات

Example 8: Find the line L1 passes through the point $\mathrm{P}(1,2)$ and parallel the line L2: $\mathrm{x}+2 \mathrm{y}=3$.
SOL: L1: $\quad \mathrm{P}(1,2) \quad \mathrm{M}=$???
L2: $\quad \mathrm{x}+2 \mathrm{y}=3$.
L1 parallel the line L 2 so that $\mathrm{m} 1=\mathrm{m} 2$.
$\mathrm{x}+2 \mathrm{y}=3$
$y=-1 / 2 X+3 / 2$
then $m 2=-1 / 2$ so that $m 1=-1 / 2$

$$
\begin{gathered}
y=y_{1}+m\left(x-x_{1}\right) \\
y=2+\left(-\frac{1}{2}\right)(x-1) \\
y=2+\left(-\frac{1}{2} x+\frac{1}{2}\right) \\
y=-\frac{1}{2} x+\frac{5}{2}
\end{gathered}
$$

The Distance from a Point to a Line:

The distance (d) between the line L is $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ and the point $P\left(x_{1}, y_{1}\right)$:

$$
d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}
$$

Example 9: Find the distance from the point $\mathrm{P}(2,1)$ to the line $\mathrm{y}=\mathrm{x}+2$
SOL: 1-put the line in the general form $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$

$$
\begin{gathered}
\mathrm{y}=\mathrm{x}+2 \\
-\mathrm{x}+\mathrm{y}-2=0 \\
\text { so that } \mathrm{A}=-1 \quad \mathrm{~B}=1, \mathrm{C}=-2 \quad, x_{1}=2, y_{1}=1 \\
\boldsymbol{d}=\frac{\left|\mathbf{A x _ { 1 }}+\mathbf{B} \boldsymbol{y}_{\mathbf{1}}+\mathbf{C}\right|}{\sqrt{\boldsymbol{A}^{2}+\boldsymbol{B}^{2}}} \\
=\frac{|-\mathbf{1} *(\mathbf{2})+\mathbf{1} *(\mathbf{1})+(-\mathbf{2})|}{\sqrt{(-\mathbf{1})^{2}+(\mathbf{1})^{2}}} \\
=\frac{|-\mathbf{3}|}{\sqrt{2}}=\frac{3}{\sqrt{2}} .
\end{gathered}
$$

المادة: الرياضيات

H.W:

1. finding the slope and y-Intercept for the line $4 x+2 y=4$.
2. write an equation for the line pass through $(-1,-1)$ and $(1,5)$.
3. write an equation for the line pass through the point $(1,-1)$ with slope (5).
4. Find the slope of the straight line through the two points $P(5,-2)$ and $Q(3,6)$.
5. write an equation for the horizontal line pass through the point $(1,-1)$.
6. Find the line L1 passes through the point $(-2,2)$ and perpendicular to the line L 2 : $2 x+y=4$.
7. Find the distance from the point $P(3,2)$ to the line $y=3 x-4$.
8. Find the distance from the point $P(-4,1)$ to the line $y=-2 x+1$.
9. Find the following:

* The slope of the line $2 x+3 y-5=0$?
*The distance from the above line to the point $\mathrm{P}(-1,0)$.

Functions (الدوال

DEFINITION: Function

A Functions is a set D (domain) to a set R (range) is a rule that assigns to unique (single) element $f(x) \square R$ to each element $x \square D$.

$$
\boldsymbol{F}: \boldsymbol{X} \rightarrow \boldsymbol{F}(\boldsymbol{X}) \text { it means that } \mathrm{f} \text { sends } \mathrm{x} \text { to } \mathrm{f}(\mathrm{x})=\mathrm{y}
$$

- The set of x is called the "Domain" of the function (Df).
- The set of y is called the "Range" of the function (Rf).

Domain (Df): is the set of all possible inputs (x-values).
Range ($\mathbf{R f}$): is the set of all possible outputs (y -values).

المادة: الرياضيات

المرحلة: اوراخلى
التدريسي : م.د رياض حامد

Lecture (1)

كلية الهيندسة والتقنيات الهيندسة
تقنيات الوقود والطاقة

جامعة المنستقبل

Note: To find Domain (Df) and the Range (Rf) the following points must be noticed:
1- The denominator in a function must not equal zero (never divide by zero).
2- The values under even roots must be positive.

Examples: Find the Domain (Df) and Range (Rf) of the following functions:

$$
\text { 1- } y=f(x)=\frac{1}{x}
$$

Sol: denominator must not equal zero

$$
x \neq 0
$$

Df $=R /\{0\}$
To find Rf : we must convert the function from $y=f(x)$ into $x=f(y)$.

$$
y=\frac{1}{x} \quad \rightarrow \quad x=\frac{1}{y}
$$

$\checkmark \mathrm{Rf}=\mathrm{R} /\{0\}$.

2- $y=\sqrt{3-X}$

$$
3-X \geq 0 \rightarrow 3 \geq X
$$

$D f=\{x \in R / x \leq 3\}$
To find Rf : we must convert the function from $\mathrm{y}=\mathrm{f}(\mathrm{x})$ into $\mathrm{x}=\mathrm{f}(\mathrm{y})$.

$$
\checkmark \begin{aligned}
& y=\sqrt{3-x} \\
& y^{2}=3-x \\
& x=3-y^{2} \\
& \checkmark R f=\{y \in R\} .
\end{aligned}
$$

H.W: Find the Domain (Df) and Range (Rf) of the following functions:

1- $y=\frac{1}{x^{2}}$
2- $y=2 x^{2}$
3- $y=\sqrt{5-2 X}$.

Absolute Value Function: it is defined as:

$$
\bar{y}=|x|=\sqrt{x^{2}}= \begin{cases}x & \text { if } x>0 \\ -x & \text { if } x<0\end{cases}
$$

Absolute Value Properties

1. $|-a|=|a|$
2. $|a b|=|a||b|$
3. $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$
4. $|a+b| \leq|a|+|b|$

A number and its additive inverse or negative have the same absolute value.
The absolute value of a product is the product of the absolute values.
The absolute value of a quotient is the quotient of the absolute values.
The triangle inequality. The absolute value of the sum of two numbers is less than or equal to the
Absolute Values and Intervals
If a is any positive number, then
5. $|x|=a \quad$ if and only if $\quad x= \pm a$
6. $|x|<a \quad$ if and only if $-a<x<a$
7. $|x|>a$ if and only if $x>a$ or $x<-a$
8. $|x| \leq a \quad$ if and only if $-a \leq x \leq a$
9. $|x| \geq a \quad$ if and only if $x \geq a$ or $x \leq-a$

Examples: Solve the following for x ?

1. $|x|=3 \quad$ sol.: So $\quad x=3 \quad \& \quad x=-3 \quad D_{f}=\{3,-3\}$
2. $|x|<3$
sol.: So
a: $x<3$
$\Rightarrow \quad D_{\mathrm{a}}=(-\infty, 3)$
and $\mathrm{b}:-x<3$ (multiply by -1)
$\Rightarrow x>-3 \Rightarrow D_{\mathrm{b}}=(-3, \infty)$
$\therefore D_{f}=D_{\mathrm{a}} \cap D_{\mathrm{b}}=(-3,3)$

3. $|x| \geq 3$
sol.: Note (solution must consist the remaining part of the real numbers line of the previous example)

$$
\begin{aligned}
& \text { So } \quad \text { a: either } x \geq 3 \quad \Rightarrow \quad D_{\mathrm{a}}=[3, \infty) \\
& \text { b: or }-x \geq 3 \text { (multiply by }-1 \text {) } \Rightarrow x \leq-3 \\
& \Rightarrow \quad D_{\mathrm{b}}=(-\infty,-3] \\
& \therefore D_{f}=D_{\mathrm{a}} \cup D_{\mathrm{b}}=(-\infty,-3] \cup[3, \infty) \\
& =R \backslash(-3,3)
\end{aligned}
$$

4. $|2 x-3| \leq 7$
sol.: $-7 \leq 2 x-3 \leq 7$

$$
-4 \leq 2 x \leq 10 \quad \Rightarrow \quad-2 \leq x \leq 5
$$

$\therefore D_{f}=[-2,5]$
5. $|x-9|>3$
sol.: $x-9>3$ or $x-9<-3$
$\Rightarrow x>12 \quad$ or $x<3$
$\therefore D_{f}=(-\infty, 3) \cup(12, \infty)$

