المادة: الرباضيات المرحلة: الاولى التدريسي: م.د رباض حامد

جامعة المستقبل كلية الهندسة والتقنيات الهندسة تقنيات الوقود والطاقة

(المتطلبات الاساسية للتفاضل والتكامل) PREREQUISITES FOR CALCULUS

(المجموعات والفترات) Sets and Intervals

DEFINITIONS:

Set: is a collection of things under certain conditions.

Example 1:

$$A=\{1,3,5,8,10\};$$

A is a set, 1,3,5,8,10 are elements.

Real Numbers (R): is a set of all rational and irrational numbers. $R = \{-\infty, +\infty\}$,

$$-\infty \leftarrow 0 \rightarrow +\infty$$

Integer Numbers (I): a set of all irrational numbers.

 $I = \{-\infty, ---, -3, -2, -1, 0, 1, 2, 3, ---, +\infty\}$ negative and positive numbers only.

Natural Numbers (N): consist of zero and positive integer numbers only.

$$N = \{0,1,2,3,---,+\infty\}$$

Intervals: is a set of all real numbers between two points on the real number line. (it is a subset of real numbers)

- 1. Open interval: is a set of all real numbers between A&B excluded (A&B are not elements in the set). $\{x: A < x < B\}$ or (A, B).
 - $-\infty$ $A(X)B \rightarrow +\infty$
- 2. Closed interval: is a set of all real numbers between A&B included (A&B are elements in the set). $\{x: A \le x \le B\}$ or [A, B].

$$-\infty$$
 \leftarrow $A[X]B \rightarrow +\infty$

- 3. Half-Open interval (Half-Close): is a set of all real numbers between A & B with one of the end-points as an element in the set.

a) (A, B]=
$$\{x: A < x \le B\}$$
 $-\infty \leftarrow A(X)B \rightarrow +\infty$

b)
$$[A, B) = \{x: A \le x \le B\}$$

b) [A, B]=
$$\{x: A \le x < B\}$$
 $-\infty \leftarrow A[X] \rightarrow +\infty$

المادة: الرياضيات المرحلة: الاولى التدريسي : م.د رياض حامد

جامعة المستقبل كلية الهندسة والتقنيات الهندسة تقنيات الوقود والطاقة

	Notation	Set description	Туре	Picture
Finite:	(a,b)	$\{x \mid a < x < b\}$	Open	a b
	[a, b]	$\{x a\leq x\leq b\}$	Closed	a b
	[a, b)	$\{x \mid a \le x < b\}$	Half-open	a b
	(a, b]	$\{x \mid a < x \le b\}$	Half-open	a b
Infinite:	(a,∞)	$\{x x>a\}$	Open	ā
	$[a,\infty)$	$\{x x\geq a\}$	Closed	a
	$(-\infty,b)$	$\{x x < b\}$	Open	<u>b</u>
	$(-\infty,b]$	$\{x x\leq b\}$	Closed	<u> </u>
	$(-\infty, \infty)$	\mathbb{R} (set of all real numbers)	Both open and closed	

(الاحداثيات في الفراغ او المستوي) Coordinate in the Plane

Each point in the plane can be represented with a pair of real numbers (a,b), the number a is the horizontal distance from the origin to point P, while b is the vertical distance from the origin to point P. The origin divides the x-axis into positive x axis to the right and the negative x-axis to the left, also, the origin divides the y-axis into positive y-axis upward and the negative x-axis downward. The axes divide the plane into four regions called quadrants.

المادة: الرياضيات المرحلة: الاولى التدريسي: م.د رياض حامد

جامعة المستقبل كلية الهندسة والتقنيات الهندسة تقنيات الوقود والطاقة

Distance between Points and (Mid-Point Formula):

Distance between points in the plane is calculated with a formula that comes from Pythagorean Theorem:

Distance Formula for Points in the Plane

The distance between $P(x_1, y_1)$ and $Q(x_2, y_2)$

$$\mathbf{d} = \sqrt{(\Delta \mathbf{x})^2 + (\Delta \mathbf{y})^2} = \sqrt{(\mathbf{x}_2 - \mathbf{x}_1)^2 + (\mathbf{y}_2 - \mathbf{y}_1)^2}$$

and the mid-point formula:

$$x_0 = \frac{x_1 + x_2}{2}$$
 , $y_0 = \frac{y_1 + y_2}{2}$

Example 2: find the distance between P(-1,2) and Q(3,4) and find the midpoint:

Sol.:

$$\begin{split} d &= \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{(3 - (-1))^2 + (4 - 2)^2} = \sqrt{20} = 2\sqrt{5} \\ x_0 &= \frac{x_1 + x_2}{2} \text{ , } x_0 = \frac{-1 + 3}{2} = 1 \text{ and } y_0 = \frac{y_1 + y_2}{2} \text{ , } y_0 = \frac{2 + 4}{2} = 3. \end{split}$$

Example 3: find the distance between $\mathbf{R(2,-3)}$ and $\mathbf{S(6,1)}$ and find the midpoint:

Sol.:

$$\begin{split} d &= \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{(6 - 2)^2 + (1 - (-3))^2} = \sqrt{16 + 16} = \sqrt{32} = 2\sqrt{8} \\ x_0 &= \frac{x_1 + x_2}{2} \text{ , } x_0 = \frac{2 + 6}{2} = 4 \text{ and } \quad y_0 = \frac{y_1 + y_2}{2} \text{ , } y_0 = \frac{-3 + 1}{2} = -1. \end{split}$$

المادة: الرياضيات المرحلة: الاولى التدريسي: م.د. رياض حامد

Lecture (1)

جامعة المستقبل كلية الهندسة والتقنيات الهندسة تقنيات الوقود والطاقة

Slope and Equation of Line

* Slope (الميل): The constant

$$\mathbf{m} = \frac{\Delta \mathbf{y}}{\Delta \mathbf{x}} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1}$$

is the slope of non-vertical line P_1 P_2 .

Note1: Horizontal line have ($\mathbf{m=0}$) ($\Delta \mathbf{y} = 0$), and the vertical line has no slope or the slope of vertical line is undefined ($\Delta \mathbf{x} = 0$).

Note2: Parallel lines have the same slope In the lines are parallel then (m1= m2).

Note3: If two non-vertical lines L1 and L2 are perpendicular, their slopes **m1** and **m2** satisfy

$$m1*m2 = -1,$$

so each slope is the negative reciprocal of the other.

$$m_1 = \frac{-1}{m_2}$$
 and $m_2 = \frac{-1}{m_1}$

Example 4: Find the slope of the straight line through the two points P(3,2) and Q(4,4):

Sol.:

$$\mathbf{m} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 2}{4 - 3} = 2.$$

المادة: الرباضيات المرحلة: الاولى التدريسي : م.د رياض حامد

جامعة المستقبل كلية الهندسة والتقنيات الهندسة تقنيات الوقود والطاقة

Point-Slope Equation:

We can write an equation for a non-vertical straight line L if we know its slope m and the coordinate of one point $P_1(x_1, y_1)$ on it. If P(x, y) is any other point on L, then we can use two points P₁ and P to compute the slope,

$$\mathbf{m} = \frac{\mathbf{y} - \mathbf{y_1}}{\mathbf{x} - \mathbf{x_1}}$$

or

$$y - y_1 = m(x - x_1)$$

 $y = y_1 + m(x - x_1)$

The equation
$$y = y_1 + m(x - x_1)$$

is the point-slope equation of the line that passes through the point $P_1(x_1, y_1)$ and has slope m.

Example 5: write an equation for the line pass through the point (2,3) with slope (-3/2).

Sol.: we substitute $x_1 = 2$, $y_1 = 3$, and m = -3/2 into the point-slope equation and obtain

$$y = y_1 + m(x - x_1)$$

$$y = 3 + \frac{-3}{2}(x - 2)$$

$$y = -\frac{3}{2}x + 6.$$

$$y=-\frac{3}{2}x+6.$$

المادة: الرياضيات المرحلة: الاولى التدريسي: م.د. رياض حامد

Lecture (1)

جامعة المستقبل كلية الهندسة والتقنيات الهندسة تقنيات الوقود والطاقة

Example 6: A line pass through two points: write an equation for the line through

(-2,-1) and (3,4)

Sol.: The line's slope is

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 4}{-2 - 3} = \frac{-5}{-5} = 1.$$

We can use this slope with either of the two given points in the point-slope equation;

With
$$(x1,y1) = (-2,-1)$$

 $y = -1 + 1 \cdot (x-(-2))$
 $y = -1 + x + 2$
 $y = x + 1$

With
$$(x2,y2) = (3, 4)$$

 $y = 4 + 1 \cdot (x-3)$
 $y = 4 + x - 3$
 $y = x + 1$

Note: The equation:

$$y = mx + b$$

is called the **slope-intercept equation** of the line with slope m and y-intercept b

Note: The general form of straight line equation is

$$\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} + \mathbf{C} = \mathbf{0}$$

Example 7: finding the slope and y-Intercept for the line 8x + 5y = 20.

Sol.: solve the equation for y to put it in slope-intercept form :

$$8x + 5y = 20$$

 $5y = -8x + 20$
 $y = -8/5 x + 4$.

The slope $\mathbf{m} = -8/5$. the y-intercept is $\mathbf{b} = 4$.

المادة: الرياضيات المرحلة: الاولى التدريسي: م.د رياض حامد

Lecture (1)

جامعة المستقبل كلية الهندسة والتقنيات الهندسة تقنيات الوقود والطاقة

Example 8: Find the line L1 passes through the point P(1,2) and parallel the line L2: x + 2y = 3.

L2:
$$x + 2y = 3$$
.

L1 parallel the line L2 so that m1=m2.

$$x + 2y = 3$$

$$y = -1/2 X + 3/2$$

then m2 = -1/2 so that m1 = -1/2

$$y = y_1 + m(x - x_1)$$

$$y = 2 + (-\frac{1}{2})(x - 1)$$

$$y = 2 + (-\frac{1}{2}x + \frac{1}{2})$$

$$y=-\frac{1}{2}x+\frac{5}{2}$$

The Distance from a Point to a Line:

The distance (d) between the line L is Ax + By + C = 0 and the point $P(x_1, y_1)$:

$$d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$$

Example 9: Find the distance from the point P(2,1) to the line y = x + 2 SOL: 1- put the line in the general form Ax + By + C = 0

$$y = x + 2$$

$$-x+y-2=0$$

so that A=-1, B=1, C=-2, $x_1 = 2$, $y_1 = 1$

$$d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}} = \frac{|-1 * (2) + 1 * (1) + (-2)|}{\sqrt{(-1)^2 + (1)^2}}$$
$$= \frac{|-3|}{\sqrt{2}} = \frac{3}{\sqrt{2}}.$$

المادة: الرياضيات المرحلة: الاولى التدريسي : م.د رياض حامد

جامعة المستقبل كلية الهندسة والتقنيات الهندسة تقنيات الوقود والطاقة

H.W:

- 1. finding the slope and y-Intercept for the line 4x + 2y = 4.
- 2. write an equation for the line pass through (-1,-1) and (1,5).
- 3. write an equation for the line pass through the point (1,-1) with slope (5).
- **4.** Find the slope of the straight line through the two points P(5,-2) and Q(3,6).
- 5. write an equation for the horizontal line pass through the point (1,-1).
- 6. Find the line L1 passes through the point (-2,2) and perpendicular to the line L2: 2x + y = 4.
- 7. Find the distance from the point P(3,2) to the line y = 3x 4.
- **8.** Find the distance from the point P(-4,1) to the line y = -2x + 1.
- **9.** Find the following:
 - * The slope of the line 2x+3y-5=0?
 - *The distance from the above line to the point P(-1,0).

الدوال Functions

DEFINITION: Function

A <u>Functions</u> is a set D (domain) to a set R (range) is a rule that assigns to unique (single) element $f(x) \square R$ to each element $x \square D$.

 $F: X \to F(X)$ it means that f sends x to f(x)=y

- The set of x is called the "Domain" of the function (Df).
- The set of y is called the "Range" of the function (Rf).

Domain (Df): is the set of all possible inputs (x-values).

Range (Rf): is the set of all possible outputs (y-values).

المادة: الرياضيات المرحلة: الاولى التدريسي: م.د رباض حامد

جامعة المستقبل كلية الهندسة والتقنيات الهندسة تقنيات الوقود والطاقة

Note: To find Domain (Df) and the Range (Rf) the following points must be noticed:

- 1- The denominator in a function must not equal zero (never divide by zero).
- 2- The values under even roots must be positive.

Examples: Find the Domain (Df) and Range (Rf) of the following functions:

1-
$$y = f(x) = \frac{1}{x}$$

Sol: denominator must not equal zero

$$x \neq 0$$

$$\checkmark \mathbf{Df} = \mathbf{R}/\{0\}$$

To find $\mathbb{R}f$: we must convert the function from y=f(x) into x=f(y).

$$y = \frac{1}{x} \rightarrow x = \frac{1}{y}$$

$$\checkmark$$
 Rf =R/{0}.

2-
$$y = \sqrt{3 - X}$$

$$3 - X \ge 0 \to 3 \ge X$$

$$\checkmark Df = \{x \in R / x \le 3\}$$

To find Rf: we must convert the function from y=f(x) into x=f(y).

$$y = \sqrt{3 - x}$$

$$y^2 = 3 - x$$

$$x = 3 - y^2$$

$$\checkmark Rf = \{y \in R\}.$$

H.W: Find the Domain (Df) and Range (Rf) of the following functions:

1-
$$y = \frac{1}{x^2}$$

2-
$$y = 2x^2$$

3-
$$y = \sqrt{5-2X}$$
.

Absolute Value Function: it is defined as:

$$|\mathbf{y}| = |\mathbf{x}| = \sqrt{x^2} = \begin{cases} x & \text{if } x > 0 \\ -x & \text{if } x < 0 \end{cases}$$

Absolute Value Properties

1. |-a| = |a| A number and its additive inverse or negative have the same absolute value.

2. |ab| = |a||b| The absolute value of a product is the product of the absolute values.

3. $\left| \frac{a}{b} \right| = \frac{|a|}{|b|}$ The absolute value of a quotient is the quotient of the absolute values.

4. $|a + b| \le |a| + |b|$ The **triangle inequality**. The absolute value of the sum of two numbers is less than or equal to the

Absolute Values and Intervals

If a is any positive number, then

5. |x| = a if and only if $x = \pm a$

6. |x| < a if and only if -a < x < a

7. |x| > a if and only if x > a or x < -a

8. $|x| \le a$ if and only if $-a \le x \le a$

9. $|x| \ge a$ if and only if $x \ge a$ or $x \le -a$

Examples: Solve the following for x?

1. |x| = 3 sol.: So x=3 & x=-3 $D_f = \{3,-3\}$

2.
$$|x| < 3$$
 sol.: So a: $x < 3$ $\Rightarrow D_a = (-\infty, 3)$

and b:
$$-x < 3$$
 (multiply by -1)
 $\Rightarrow x > -3 \Rightarrow D_b = (-3, \infty)$

$$\therefore D_f = D_a \cap D_b = (-3,3)$$

$$D_a - \infty$$
 $D_b - \infty$
 $D_a \cap D_b - \infty$

3.
$$|x| \ge 3$$

sol.: *Note* (solution must consist the remaining part of the real numbers line of the previous example)

So a: either $x \ge 3 \Rightarrow D_a=[3,\infty)$ b: or $-x \ge 3$ (multiply by -1) $\Rightarrow x \le -3$

$$\Rightarrow D_b = (-\infty, -3]$$

$$D_f = D_a \cup D_b = (-\infty, -3] \cup [3, \infty)$$
$$= R \setminus (-3, 3)$$

المادة: الرياضيات المرحلة: الاولى التدريسي: م.د رياض حامد

جامعة المستقبل كلية الهندسة والتقنيات الهندسة تقنيات الوقود والطاقة

4.
$$|2x-3| \le 7$$

sol.:
$$-7 \le 2x - 3 \le 7$$

 $-4 \le 2x \le 10$ ⇒ $-2 \le x \le 5$

:.
$$D_f = [-2,5]$$

5.
$$|x-9| > 3$$

sol.:
$$x-9>3$$
 or $x-9<-3$

$$\Rightarrow x > 12$$
 or $x < 3$

$$\therefore D_f = (-\infty,3) \cup (12,\infty)$$