

NATURAL FREQUENCY OF FREE TRANSVERSE VIBRATIONS DUE TO A POINT LOAD ACTING OVER A SIMPLY SUPPORTED SHAFT

التردد الطبيعي للاهتزازات الطولية تحت تأثير الحمل لنقطه واحده على العمود البسيط المثبت بطرق مختلفة

Consider a shaft AB of length I, carrying a point load W at C which is at a distance of I1 from A and I2 from B, as shown in Fig.1. A little consideration will show that when the shaft is deflected and suddenly released, it will make transverse vibrations. The deflection of the shaft is proportional to the load W and if the beam is deflected beyond the static equilibrium position then the load will vibrate with simple harmonic motion (as by a helical spring). If δ is the static deflection due to load W, then the natural frequency of the free transverse vibration is

1

Some of the values of the static deflection for the various types of beams and under various load conditions are given in the following table .

Table.1. Values of static deflection (δ) for the various types of beams and under various load conditions.

 $t_p = \frac{1}{f_n}$

 $\omega_n = \sqrt[2]{\frac{g}{\sigma}}$

جدول رقم(1) حساب التشويه الاستاتيكي للأعمدة حسب نوع الحمل والتثبيت العمود .

S.No.	Type of beam	Deflection (8)
1.	Cantilever beam with a point load W at the free end.	$\delta = \frac{W1^3}{3EI}$ (at the free end)
2.	Cantilever beam with a uniformly distributed load of w per unit length.	$\delta = \frac{wl^4}{8EI}$ (at the free end)
3.	Simply supported beam with an eccentric point load W . W \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	$\delta = \frac{Wa^2b^2}{3EIl}$ (at the point load)
4.	Simply supported beam with a central point load W . W	$\delta = \frac{Wl^3}{48EI}$ (at the centre)
5.	Simply supported beam with a uniformly distributed load of w per unit length.	$\delta = \frac{5}{384} \times \frac{wl^4}{EI}$ (at the centre)
6.	Fixed beam with an eccentric point load W . W $a \rightarrow a$ $b \rightarrow b$	$\delta = \frac{Wa^3b^3}{3E I l}$ (at the point load)
7.	Fixed beam with a central point load W .	$\delta = \frac{Wl^3}{192EI}$ (at the centre)
8.	Fixed beam with a uniformly distributed load of w per unit length.	$\delta = \frac{wl^4}{384EI}$ (at the centre)