NATURAL FREQUENCY OF FREE TRANSVERSE Vibrations Due to a Point Load Acting Over a SIMPLY SUPPORTED SHAFT

التردد الطبيعي للاهتزازات الطولية تحت تأثيّر الحمل لنقطه واحده على العمود
البسيط المثبت بطرق مختلفة

Consider a shaft AB of length I, carrying a point load W at C which is at a distance of I 1 from A and I 2 from B, as shown in Fig.1. A little consideration will show that when the shaft is deflected and suddenly released, it will make transverse vibrations. The deflection of the shaft is proportional to the load W and if the beam is deflected beyond the static equilibrium position then the load will vibrate with simple harmonic motion (as by a helical spring). If δ is the static deflection due to load \mathbf{W}, then the natural frequency of the free transverse vibration is

Fig. 1 Simply supported beam with a point load.

$$
\begin{aligned}
& f_{n}=\frac{1}{2 \pi} \sqrt{\frac{g}{\delta}}=\frac{0.4985}{\sqrt{\delta}} \mathrm{~Hz} \\
& \mathbf{t}_{\mathrm{p}}=\frac{\mathbf{1}}{\boldsymbol{f}_{\boldsymbol{n}}} \\
& \boldsymbol{\omega}_{\boldsymbol{n}}=\sqrt[2]{\frac{\boldsymbol{g}}{\boldsymbol{\sigma}}}
\end{aligned}
$$

Some of the values of the static deflection for the various types of beams and under various load conditions are given in the following table .

Table.1. Values of static deflection (δ) for the various types of beams and under various load conditions.

جدول رقم(1)حساب التشويه الاستاتيكي للأعمدة حسب نوع الحمل والتثبيت العمود .

S.No.	Type of beam	Deffection (\$)
1.	Cantilever beam with a point load W at the free end.	$\delta=\frac{W l^{3}}{3 E I}$ (at the free end)
2.	Cantilever beam with a uniformly distributed load of w per unit length.	$\delta=\frac{w l^{4}}{8 E I}$ (at the free end)
3.	Simply supported beam with an eccentric point load W.	$\delta=\frac{W a^{2} b^{2}}{3 E I l}$ (at the point load)
4.	Simply supported beam with a central point load W.	$\delta=\frac{W l^{3}}{48 E I} \text { (at the centre) }$

5.	Simply supported beam with a uniformly distributed load of w per unit length.	$\delta=\frac{5}{384} \times \frac{w l^{4}}{E I}$ (at the centre)
6.	Fixed beam with an eccentric point load w.	$\delta=\frac{W a^{3} b^{3}}{3 E I l}$ (at the point load)
7.	Fixed beam with a central point load W.	$\delta=\frac{W Z^{3}}{192 E I} \text { (at the centre) }$
8.	Fixed beam with a uniformly distributed load of w per unit length.	$\delta=\frac{w l^{4}}{384 E I}$ (at the centre)

