second \& high order derivatives

$y=\frac{d y}{d x}$ is the first Order derivatives of y to x
if y ' is defferentiable with respect to $x, s o$

$$
\text { if } y \text { is defferentiable with } \frac{d y}{d x}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d y y}{d x^{2}} \text { which is call }
$$

second order derivative ($\frac{d y y}{d x^{2}}$ or $y^{\prime \prime}$) again if $y^{\prime \prime}$ is a differentiable in $x, S 0$
$y^{\prime \prime \prime}=\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{d^{3} y}{d x^{3}}$ is the third order derivative in general

$$
y^{(n)}=\frac{d}{d x} y^{(n-1)}
$$

How to read derivative symbols
yo (y prime)
" " y double primes
III "y triple prime »
$y^{(n)}$ by super $n s$
$E x$: find y^{\prime}, y, y and $y^{(4)}$ for $y=x^{3}-3 x^{2}+2$
Ans:,

$$
\begin{array}{ll}
y^{\prime}=3 x^{2}-6 x & ,
\end{array}
$$

High order derivatives let $y=f(x)$
$1^{\text {st }}$ order derivative $y^{\prime}=f(x)$
$2^{n d}$

$$
\bar{y}=f^{\prime \prime}(x)
$$

$3^{r d}$

$$
y^{\prime \prime}=f^{\prime \prime \prime}(x)
$$

$E x: \quad y=x^{4}+3 x^{3}+2 x+5$
Find $y^{\prime}, y^{\prime \prime}$ and $y^{\prime \prime}$
Ans:

$$
\begin{aligned}
& \frac{d y}{d x}=y^{\prime}=4 x^{3}+9 x^{2}+2 \\
& \frac{d^{2} y}{d x^{2}}=y^{\prime \prime}=12 x^{2}+18 x \\
& \frac{d 3 y}{d x^{3}}=y^{\prime \prime}=24 x+18
\end{aligned}
$$

$E x$: if $y=x(x+3)^{2}$, Find $y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}$
Ans

$$
\begin{aligned}
y^{\prime} & =x \times 2(x+3)+(x+3) \\
& =2 x^{2}+3 x+x+3 \\
& =2 x^{2}+4 x+3 \\
y^{\prime \prime} & =4 x^{2}+4 \\
y^{\prime \prime} & =12 x
\end{aligned}
$$

High order derivatives of rational function Ex: Find $\frac{d y}{d x^{2}}$ if $2 x^{3}-3 y^{2}=7$

Ans:

$$
2 x^{3}-3 y^{2}=7
$$

$6 x^{2}-6 y \frac{d y}{d x}=0$ or can be written

$$
6 x^{2}-y y^{\prime}=0 \quad \rightarrow\left(y=\frac{6 x^{2}}{y}\right)
$$

derive again

$$
\begin{aligned}
& 12 x-\left(y \times y^{\prime \prime}+\dot{y} \times y^{\prime}\right)=0 \\
& 12 x-y y^{\prime \prime}+\dot{y}^{2}=0 \\
& -y y^{\prime \prime}=-\bar{y}^{2}-12 x \\
& y y^{\prime \prime}=\bar{y}^{2}+12 x \\
& y^{\prime \prime}=\frac{\left(y^{2}\right)+12 x}{y}=\frac{\left(\frac{6 x^{2}}{y}\right)^{3}+12 x}{y} \\
& =\frac{36 x^{4}}{y^{2}}+12 x \\
& y
\end{aligned}=\frac{36 x^{4} 12 x y^{2}}{y^{3}}
$$

Exercises 2.6

Derivatives of Rational Powers

Find $d y / d x$ in Exercises 1-10.

1. $y=x^{9 / 4}$
2. $y=x^{-3 / 5}$
3. $y=\sqrt[3]{2 x}$
4. $y=\sqrt[4]{5 x}$
5. $y=7 \sqrt{x+6}$
6. $y=-2 \sqrt{x-1}$
7. $y=(2 x+5)^{-1 / 2}$
8. $y=(1-6 x)^{2 / 3}$
9. $y=x\left(x^{2}+1\right)^{1 / 2}$
10. $y=x\left(x^{2}+1\right)^{-1 / 2}$

Find the first derivatives of the functions in Exercises 11-18.
11. $s=\sqrt[3]{t^{2}}$
12. $r=\sqrt[4]{\theta^{-3}}$
13. $y=\sin \left[(2 t+5)^{-2 / 3}\right]$
14. $z=\cos \left[(1-6 t)^{2 / 3}\right]$
15. $f(x)=\sqrt{1-\sqrt{x}}$
16. $g(x)=2\left(2 x^{-1 / 2}+1\right)^{-1 / 3}$
17. $h(\theta)=\sqrt[3]{1+\cos (2 \theta)}$
18. $k(\theta)=(\sin (\theta+5))^{5 / 4}$

Differentiating Implicitly

Use implicit differentiation to find $d y / d x$ in Exercises 19-32.
19. $x^{2} y+x y^{2}=6$
20. $x^{3}+y^{3}=18 x y$
21. $2 x y+y^{2}=x+y$
22. $x^{3}-x y+y^{3}=1$
23. $x^{2}(x-y)^{2}=x^{2}-y^{2}$
24. $(3 x y+7)^{2}=6 y$
25. $y^{2}=\frac{x-1}{x+1}$
26. $x^{2}=\frac{x-y}{x+y}$
27. $x=\tan y$
28. $x=\sin y$
29. $x+\tan (x y)=0$
30. $x+\sin y=x y$
31. $y \sin \left(\frac{1}{y}\right)=1-x y$
32. $y^{2} \cos \left(\frac{1}{y}\right)=2 x+2 y$

Find $d r / d \theta$ in Exercises 33-36.
33. $\theta^{1 / 2}+r^{1 / 2}=1$
34. $r-2 \sqrt{\theta}=\frac{3}{2} \theta^{2 / 3}+\frac{4}{3} \theta^{3 / 4}$
35. $\sin (r \theta)=\frac{1}{2}$
36. $\cos r+\cos \theta=r \theta$

Slopes, Tangents, and Normals

In Exercises 45 and 46, find the slope of the curve at the given points.
45. $y^{2}+x^{2}=y^{4}-2 x$ at $(-2,1)$ and $(-2,-1)$
46. $\left(x^{2}+y^{2}\right)^{2}=(x-y)^{2}$ at (1,0) and ($1,-1$)

In Exercises 47-56, verify that the given point is on the curve and find the lines that are (a) tangent and (b) normal to the curve at the given point.
47. $x^{2}+x y-y^{2}=1, \quad(2,3)$
48. $x^{2}+y^{2}=25, \quad(3,-4)$
49. $x^{2} y^{2}=9, \quad(-1,3)$
50. $y^{2}-2 x-4 y-1=0, \quad(-2,1)$
51. $6 x^{2}+3 x y+2 y^{2}+17 y-6=0, \quad(-1,0)$
52. $x^{2}-\sqrt{3} x y+2 y^{2}=5, \quad(\sqrt{3}, 2)$
53. $2 x y+\pi \sin y=2 \pi, \quad(1, \pi / 2)$
54. $x \sin 2 y=y \cos 2 x, \quad(\pi / 4, \pi / 2)$
55. $y=2 \sin (\pi x-y), \quad(1,0)$
56. $x^{2} \cos ^{2} y-\sin y=0, \quad(0, \pi)$
57. Find the two points where the curve $x^{2}+x y+y^{2}=7$ crosses the x-axis, and show that the tangents to the curve at these points are parallel. What is the common slope of these tangents?
58. Find points on the curve $x^{2}+x y+y^{2}=7$ (a) where the tangent is parallel to the x-axis and (b) where the tangent is parallel to the y-axis. In the latter case, $d y / d x$ is not defined, but $d x / d y$ is. What value does $d x / d y$ have at these points?
59. The eight curve. Find the slopes of the curve $y^{4}=y^{2}-x^{2}$ at the two points shown here.

Higher Derivatives

In Exercises 37-42, use implicit differentiation to find $d y / d x$ and then $d^{2} y / d x^{2}$.
37. $x^{2}+y^{2}=1$
38. $x^{2 / 3}+y^{2 / 3}=1$
39. $y^{2}=x^{2}+2 x$
40. $y^{2}-2 x=1-2 y$
41. $2 \sqrt{y}=x-y$
42. $x y+y^{2}=1$
43. If $x^{3}+y^{3}=16$, find the value of $d^{2} y / d x^{2}$ at the point $(2,2)$.
44. If $x y+y^{2}=1$, find the value of $d^{2} y / d x^{2}$ at the point $(0,-1)$.
How to read the symbols for derivatives
$y^{\prime} \quad$ "y prime" $\quad y^{\prime \prime}$ " y double prime"
$\frac{d^{2} y}{d x^{2}}$ " d squared $y d x$ squared"
$y^{\text {m" }} \quad$ "y triple prime"
$y^{(*)} \quad$ "y super $n "$
$\frac{d^{n} y}{d x^{n}} \quad$ " d to the n of y by $d x$ to the $n^{"}$

First derivative: $\quad y^{\prime}=3 x^{2}-6 x$
Second derivative: $\quad y^{\prime \prime}=6 x-6$
Third derivative: $\quad y^{\prime \prime \prime}=6$
Fourth derivative: $\quad y^{(4)}=0$.
The function has derivatives of all orders, the fifth and later derivatives all being zero.

> Solve as much as you can

Exercises 2.2

Derivative Calculations

In Exercises 1-12, find the first and second derivatives.

1. $y=-x^{2}+3$
2. $y=x^{2}+x+8$
3. $s=5 t^{3}-3 t^{5}$
4. $w=3 z^{7}-7 z^{3}+21 z^{2}$
5. $y=\frac{4 x^{3}}{3}-x$
6. $y=\frac{x^{3}}{3}+\frac{x^{2}}{2}+\frac{x}{4}$
7. $w=3 z^{-2}-\frac{1}{z}$
8. $s=-2 t^{-1}+\frac{4}{t^{2}}$
9. $y=6 x^{2}-10 x-5 x^{-2}$
10. $y=4-2 x-x^{-3}$
11. $r=\frac{1}{3 s^{2}}-\frac{5}{2 s}$
12. $r=\frac{12}{\theta}-\frac{4}{\theta^{3}}+\frac{1}{\theta^{4}}$

In Exercises 13-16, find y^{\prime} (a) by applying the Product Rule and (b) by multiplying the factors to produce a sum of simpler terms to differentiate.
13. $y=\left(3-x^{2}\right)\left(x^{3}-x+1\right)$
14. $y=(x-1)\left(x^{2}+x+1\right)$
15. $y=\left(x^{2}+1\right)\left(x+5+\frac{1}{x}\right)$
16. $y=\left(x+\frac{1}{x}\right)\left(x-\frac{1}{x}+1\right)$

Find the derivatives of the functions in Exercises 17-28.
17. $y=\frac{2 x+5}{3 x-2}$
18. $z=\frac{2 x+1}{x^{2}-1}$
19. $g(x)=\frac{x^{2}-4}{x+0.5}$
20. $f(t)=\frac{t^{2}-1}{t^{2}+t-2}$
21. $v=(1-t)\left(1+t^{2}\right)^{-1}$
22. $w=(2 x-7)^{-1}(x+5)$
23. $f(s)=\frac{\sqrt{s}-1}{\sqrt{s}+1}$
24. $u=\frac{5 x+1}{2 \sqrt{x}}$
25. $v=\frac{1+x-4 \sqrt{x}}{x}$
26. $r=2\left(\frac{1}{\sqrt{\theta}}+\sqrt{\theta}\right)$
27. $y=\frac{1}{\left(x^{2}-1\right)\left(x^{2}+x+1\right)}$
28. $y=\frac{(x+1)(x+2)}{(x-1)(x-2)}$

Find the derivatives of all orders of the functions in Exercises 29 and 30.
29. $y=\frac{x^{4}}{2}-\frac{3}{2} x^{2}-x$
30. $y=\frac{x^{5}}{120}$

Find the first and second derivatives of the functions in Exercises 31-38.
$\begin{array}{ll}\text { 31. } y=\frac{x^{3}+7}{x} & \text { 32. } s=\frac{t^{2}+5 t-1}{t^{2}}\end{array}$
33. $r=\frac{(\theta-1)\left(\theta^{2}+\theta+1\right)}{\theta^{3}}$
34. $u=\frac{\left(x^{2}+x\right)\left(x^{2}-x+1\right)}{x^{4}}$
35. $w=\left(\frac{1+3 z}{3 z}\right)(3-z)$
36. $w=(z+1)(z-1)\left(z^{2}+1\right)$
37. $p=\left(\frac{q^{2}+3}{12 q}\right)\left(\frac{q^{4}-1}{q^{3}}\right)$
38. $p=\frac{q^{2}+3}{(q-1)^{3}+(q+1)^{3}}$

Using Numerical Values

39. Suppose u and v are functions of x that are differentiable at $x=0$ and that

$$
u(0)=5, \quad u^{\prime}(0)=-3, \quad v(0)=-1, \quad v^{\prime}(0)=2
$$

Find the values of the following derivatives at $x=0$,
a) $\frac{d}{d x}(u v)$
b) $\frac{d}{d x}\left(\frac{u}{v}\right)$
c) $\frac{d}{d x}\left(\frac{v}{u}\right)$
d) $\frac{d}{d x}(7 v-2 u)$
40. Suppose u and v are differentiable functions of x and that

$$
u(1)=2, \quad u^{\prime}(1)=0, \quad v(1)=5, \quad v^{\prime}(1)=-1
$$

Find the values of the following derivatives at $x=1$.
a) $\frac{d}{d x}(u v)$
b) $\frac{d}{d x}\left(\frac{u}{v}\right)$
c) $\frac{d}{d x}\left(\frac{v}{u}\right)$
d) $\frac{d}{d x}(7 v-2 u)$

Section 2.2, pp. 129-131

1. $\frac{d y}{d x}=-2 x, \frac{d^{2} y}{d x^{2}}=-2$
2. $\frac{d s}{d t}=15 t^{2}-15 t^{4}, \frac{d^{2} s}{d t^{2}}=30 t-60 t^{3}$
3. $\frac{d y}{d x}=4 x^{2}-1, \frac{d^{2} y}{d x^{2}}=8 x$
4. $\frac{d w}{d z}=-6 z^{-3}+\frac{1}{z^{2}}, \frac{d^{2} w}{d z^{2}}=18 z^{-4}-\frac{2}{z^{3}}$
5. $\frac{d y}{d x}=12 x-10+10 x^{-3}, \frac{d^{2} y}{d x^{2}}=12-30 x^{-4}$
6. $\frac{d r}{d s}=\frac{-2}{3 s^{3}}+\frac{5}{2 s^{2}}, \frac{d^{2} r}{d s^{2}}=\frac{2}{s^{4}}-\frac{5}{s^{3}}$
7. $y^{\prime}=-5 x^{4}+12 x^{2}-2 x-3$
8. $y^{\prime}=3 x^{2}+10 x+2-\frac{1}{x^{2}}$
9. $y^{\prime}=\frac{-19}{(3 x-2)^{2}}$
10. $g^{\prime}(x)=\frac{x^{2}+x+4}{(x+0.5)^{2}}$
11. $\frac{d v}{d t}=\frac{t^{2}-2 t-1}{\left(1+t^{2}\right)^{2}}$
12. $f^{\prime}(s)=\frac{1}{\sqrt{s}(\sqrt{s}+1)^{2}}$
13. $v^{\prime}=-\frac{1}{x^{2}}+2 x^{-3 / 2}$
14. $y^{\prime}=\frac{-4 x^{3}-3 x^{2}+1}{\left(x^{2}-1\right)^{2}\left(x^{2}+x+1\right)^{2}}$
15. $y^{\prime}=2 x^{3}-3 x-1, y^{\prime \prime}=6 x^{2}-3, y^{\prime \prime \prime}=12 x, y^{(4)}=12$, $y^{(n)}=0$ for $n \geq 5$
16. $y^{\prime}=2 x-7 x^{-2}, y^{\prime \prime}=2+14 x^{-3}$
17. $\frac{d r}{d \theta}=3 \theta^{-4}, \frac{d^{2} r}{d \theta^{2}}=-12 \theta^{-5}$
18. $\frac{d w}{d z}=-z^{-2}-1, \frac{d^{2} w}{d z^{2}}=2 z^{-3}$
19. $\frac{d p}{d q}=\frac{1}{6} q+\frac{1}{6} q^{-3}+q^{-5}, \frac{d^{2} p}{d q^{2}}=\frac{1}{6}-\frac{1}{2} q^{-4}-5 q^{-6}$
20. a) 13
b) -7
c) $7 / 25$
d) 20
21. a) $y=-\frac{x}{8}+\frac{5}{4}$
b) $m=-4$ at $(0,1) \quad$ c) $y=8 x-15, y=8 x+17$
22. $y=4 x, y=2$
23. $a=1, b=1, c=0$
24. a) $y=2 x+2$,
c) $(2,6)$
25. $\frac{d P}{d V}=-\frac{n R T}{(V-n b)^{2}}+\frac{2 a n^{2}}{V^{3}}$
26. The Product Rule is then the Constant Multiple Rule, so the latter is a special case of the Product Rule.
27. a) $\frac{3}{2} x^{1 / 2}$,
b) $\frac{5}{2} x^{3 / 2}$,
c) $\frac{7}{2} x^{5 / 2}$,
d) $\frac{d}{d x}\left(x^{n / 2}\right)=\frac{n}{2} x^{(n / 2)-1}$
