Ministry of higher education and scientific research Al-Mustaqbal University
Department of Medical Instrumentation Techniques

Engineering
Lecturer: MSC. Shahlaa yaseen

Lecture Four

The voltage and current divider circuits

4.1 The voltage-divider circuit

Voltage-divider circuit, shown in Fig.4.1. We analyze this circuit by directly applying Ohm's law and Kirchhoff's laws. To aid the analysis we introduce the current \boldsymbol{I} as shown in Fig.4.1 (b).

From Kirchhoff's current law \mathbf{R}_{1} and \mathbf{R}_{2}, carry the same current. Applying Kirchhoff's voltage law around the closed loop yields

(a)

(b)

Figure 4.1 (a) A voltage-divider circuit and (b) The voltage-divider circuit with current i indicated

$$
\mathbf{V s}=\mathbf{I} \mathbf{R}_{1}+\mathbf{I} \mathbf{R}_{2},
$$

Now we can use Ohm's law to calculate v_{l} and, v_{2} :

$$
\begin{equation*}
v_{1}=\frac{\mathbf{R}_{1} v_{s}}{\mathbf{R}_{1}+\mathbf{R}_{2}}, \quad v_{2}=\frac{\mathbf{R}_{2} v_{s}}{\mathbf{R}_{1}+\mathrm{R}_{2}} \tag{4.1}
\end{equation*}
$$

In general, if a voltage divider has \mathbf{N} resistors $\left(\mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{2}}, \ldots, \mathbf{R}_{\mathbf{N}}\right)$ in series with the source voltage $\boldsymbol{v}_{\boldsymbol{s}}$, the Nth resistor $\left(\mathbf{R}_{\mathrm{N}}\right)$ will have a voltage drop of

$$
\begin{equation*}
v_{N}=\frac{\mathbf{R}_{N} v_{s}}{\mathbf{R}_{1}+\mathbf{R}_{2}+\cdots+\mathbf{R}_{\mathrm{N}}}=\frac{\mathbf{R}_{\mathrm{N}} v_{s}}{\mathbf{R}_{\mathrm{eq}}} \tag{4.2}
\end{equation*}
$$

4.2 The current-divider circuit

The current-divider circuit shown in Fig. 4.2. The current divider is designed to divide the current $\boldsymbol{i}_{\mathrm{s}}$ between $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$. We find the relationship between the current $\boldsymbol{i}_{\boldsymbol{s}}$, and the current in each resistor (that is, \boldsymbol{i}_{I} and \boldsymbol{i}_{2}) by directly applying Ohm's law and Kirchhoff's current law. The voltage across the parallel resistors is

Figure 4.2 the current-divider circuit.

$$
\begin{equation*}
\mathbf{V}=i_{1} \mathbf{R}_{1}=i_{2} \mathbf{R}_{2}=\frac{\mathbf{R}_{1} \mathbf{R}_{2}}{\mathbf{R}_{1}+\mathbf{R}_{2}} i_{s} \tag{4.3}
\end{equation*}
$$

$i_{1}=\frac{\mathbf{R}_{2} \boldsymbol{i}_{s}}{\mathbf{R}_{1}+\mathbf{R}_{2}}, \quad i_{2}=\frac{\mathbf{R}_{1} \boldsymbol{i}_{s}}{\mathbf{R}_{1}+\mathbf{R}_{2}}$
If we divide both the numerator and denominator by $\mathbf{R}_{1} \mathbf{R}_{2}$, Eq. (2.16) become
$i_{1}=\frac{\mathrm{G}_{1} \boldsymbol{i}_{s}}{\mathrm{G}_{1}+\mathrm{G}_{2}}, \quad i_{2}=\frac{\mathrm{G}_{2} \boldsymbol{i}_{s}}{\mathrm{G}_{1}+\mathrm{G}_{2}}$

Thus, in general, if a current divider has \mathbf{N} conductors $\left(\mathbf{G}_{\mathbf{1}}, \mathbf{G} \mathbf{2}, \ldots, \mathbf{G}_{\mathbf{N}}\right)$ in parallel with the source current i, the nth conductor $\left(\mathbf{G}_{\mathbf{N}}\right)$ will have current
$i_{N}=\frac{\mathrm{G}_{\mathrm{N}} i_{s}}{\mathrm{G}_{1}+\mathrm{G}_{2}+\cdots+\mathrm{G}_{\mathrm{N}}}=\frac{\mathrm{R}_{\mathrm{eq}} i_{s}}{\mathrm{R}_{\mathrm{N}}}$

Example 2.3: Find \boldsymbol{i}_{o} and $\boldsymbol{v}_{\boldsymbol{o}}$ in the circuit shown in Fig. 4.3(a). Calculate the power_dissipated in the $3-\Omega$ resistor.

Solution: The $6-\Omega$ and $3-\Omega$ resistors are in parallel, so their combined resistance is

$$
6 \Omega \| 3 \Omega=6 \times 3 /(6+3)=2 \Omega
$$

By apply voltage division, since the 12 V in Fig. 4.3(b) is divided between the $4-\Omega$ and $2-\Omega$ resistors. Hence,

$$
v_{0}=2(12 V) /(2+4)=4 V
$$

Apply current division to the circuit in Fig. 4.3(a) now that we know \mathbf{i}, by writing

$$
\begin{aligned}
& \mathrm{i}=12 / 4+2=2 \mathrm{~A} \\
& \mathrm{i}_{0}=6 \mathrm{i} /(6+3)=4 / 3 \mathrm{~A}
\end{aligned}
$$

(a)

Figure 4.3 (a)(b)riginal circuit, (b) Its equivalent circuit.

The power dissipated in the $3-\Omega$ resistor is

$$
p_{0}=v_{0} i_{0}=4(4 / 3)=5.333 \mathrm{~W}
$$

Example 4.2: Find the voltage drop at the resister 4Ω in the circuit shown in Fig.4.4
Solution:

$$
\mathbf{V}(4 \Omega)=\frac{24 \times 4 \Omega}{2 \Omega+4 \Omega+6 \Omega}=8 v
$$

Figure. 4.4

Example 4.3: Find the current through the resister 8Ω in the circuit shown in Fig.4.5

Solution:

The $8-\Omega$ and $4-\Omega$ resistors are in parallel, so their combined resistance is

$$
8 \Omega \| 4 \Omega=8 \times 4 /(8+4)=2.667 \Omega
$$

By using the voltage divider rule the voltage at (2.667Ω) is

$$
\mathrm{V}(2.667 \Omega)=\frac{16 \times 2.667 \Omega}{2 \Omega+2.667 \Omega}=9.143 v
$$

The voltage at 8Ω is 9.143 v (parallel connected)
The current through 8Ω is

Figure. 4.5

$$
\mathrm{i}(8 \Omega)=\frac{9.143}{8}=1.14 \mathrm{~A}
$$

Thank You

