Chapter Three

30. Circumferences of circles As usual, when faced with a new formula, it is a good idea to try it on familiar objects to be sure it gives results consistent with past experience. Use the length formula in Equation (3) to calculate the circumferences of the following circles $(a>0)$.
a. $r=a$
b. $r=a \cos \theta$
c. $r=a \sin \theta$

Theory and Examples
31. Average value If f is continuous, the average value of the polar coordinate r over the curve $r=f(\theta), \alpha \leq \theta \leq \beta$, with respect to θ is given by the formula

$$
r_{\mathrm{av}}=\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} f(\theta) d \theta .
$$

Use this formula to find the average value of r with respect to θ over the following curves $(a>0)$.
a. The cardioid $r=a(1-\cos \theta)$
b. The circle $r=a$
c. The circle $r=a \cos \theta, \quad-\pi / 2 \leq \theta \leq \pi / 2$
32. $\boldsymbol{r}=\boldsymbol{f}(\boldsymbol{\theta})$ vs. $\boldsymbol{r}=\mathbf{2 f (\theta) \quad \text { Can anything be said about the rela- }}$ tive lengths of the curves $r=f(\theta), \alpha \leq \theta \leq \beta$, and $r=2 f(\theta)$, $\alpha \leq \theta \leq \beta$? Give reasons for your answer.

11.6 Conic Sections

HISTORICAL BIOGRAPHY
 Gregory St. Vincent
 (1584-1667)
 www.goo.gl/WZD6Hz

Circle: plane perpendicular to cone axis

Ellipse: plane oblique to cone axis

Parabola: plane parallel to side of cone

Hyperbola: plane parallel to cone axis
(a)

Point: plane through cone vertex only

Single line: plane tangent to cone
(b)

FIGURE 11.39 The standard conic sections (a) are the curves in which a plane cuts a double cone. Hyperbolas come in two parts, called branches. The point and lines obtained by passing the plane through the cone's vertex (b) are degenerate conic sections.
geometric method was the only way that conic sections could be described by Greek mathematicians, since they did not have our tools of Cartesian or polar coordinates. In the next section we express the conics in polar coordinates.

Parabolas

FIGURE 11.40 The standard form of the parabola $x^{2}=4 p y, p>0$.

DEFINITIONS A set that consists of all the points in a plane equidistant from a given fixed point and given fixed line in the plane is a parabola. The fixed point is the focus of parabola. The fixed line is the directrix.

If the fr us F lies on the directrix L, the parabola is the line through F perpendicular to L. We c/ isider this to be a degenerate case and assume henceforth that F does not lie on L. parabola has its simplest equation when its focus and directrix straddle one of the ordinate axes. For example, suppose that the focus lies at the point $F(0, p)$ on the positive y-axis and that the directrix is the line $y=-p$ (Figure 11.40). In the notation of the figure, a point $P(x, y)$ lies on the parabola if and only if $P F=P Q$. From the distance formula,

$$
\begin{aligned}
& P F=\sqrt{(x-0)^{2}+(y-p)^{2}}=\sqrt{x^{2}+(y-p)^{2}} \\
& P Q=\sqrt{(x-x)^{2}+(y-(-p))^{2}}=\sqrt{(y+p)^{2}} .
\end{aligned}
$$

When we equate these expressions, square, and simplify, we get

$$
\begin{equation*}
y=\frac{x^{2}}{4 p} \quad \text { or } \quad x^{2}=4 p y . \quad \text { Standard form } \tag{1}
\end{equation*}
$$

These equations reveal the parabola's symmetry about the y-axis. We call the y-axis the axis of the parabola (short for "axis of symmetry").

The point where a parabola crosses its axis is the vertex. The vertex of the parabola $x^{2}=4 p y$ lies at the origin (Figure 11.40). The positive number p is the parabola's focal length.

If the parabola opens downward, with its focus at $(0,-p)$ and its directrix the line $y=p$, then Equations (1) become

$$
y=-\frac{x^{2}}{4 p} \quad \text { and } \quad x^{2}=-4 p y
$$

By interchanging the variables x and y, we obtain similar equations for parabolas opening to the right or to the left (Figure 11.41).

FIGURE 11.41 (a) The parabola $y^{2}=4 p x$. (b) The parabola $y^{2}=-4 p x$.

FIGURE 11.42 Points on the focal axis of an ellipse.

FIGURE 11.43 The ellipse defined by the equation $P F_{1}+P F_{2}=2 a$ is the graph of the equation $\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1$, where $b^{2}=a^{2}-c^{2}$.

EXAMPLE 1 Find the focus and directrix of the parabola $y^{2}=10 x$.
Solution We find the value of p in the standard equation $y^{2}=4 p x$:

$$
4 p=10, \quad \text { so } \quad p=\frac{10}{4}=\frac{5}{2}
$$

Then we find the focus and directrix for this value of p :

$$
\begin{aligned}
& \text { Focus: } \quad(p, 0)=\left(\frac{5}{2}, 0\right) \\
& \text { Directrix: } \quad x=-p \quad \text { or } \quad x=-\frac{5}{2}
\end{aligned}
$$

Ellipses

DEFINITIONS An ellipse is the set of points in a plane whose distances from two fixed points in the plane have a constant sum. The two fixed points are the foci of the ellipse.

The line through the foci of an ellipse is the ellipse's focal axis. The point on the axis halfway be-tween the foci is the center. The points where the focal axis and ellipse cross are the ellipse's vertices (Figure 11.42).

If the foci are $F_{1}(-c, 0)$ and $F_{2}(c, 0)$ (Figure 11.43), and $P F_{1}+P F_{2}$ is denoted by $2 a$, then the coordinates of a point P on the ellipse satisfy the equation

$$
\sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}}=2 a .
$$

To simplify this equation, we move the second radical to the right-hand side, square, isolate the remaining radical, and square again, obtaining

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}-c^{2}}=1 \tag{2}
\end{equation*}
$$

Since $P F_{1}+P F_{2}$ is greater than the length $F_{1} F_{2}$ (by the triangle inequality for triangle $P F_{1} F_{2}$), the number $2 a$ is greater than $2 c$. Accordingly, $a>c$ and the number $a^{2}-c^{2}$ in Equation (2) is positive.

The algebraic steps leading to Equation (2) can be reversed to show that every point P whose coordinates satisfy an equation of this form with $0<c<a$ also satisfies the equation $P F_{1}+P F_{2}=2 a$. A point therefore lies on the ellipse if and only if its coordinates satisfy Equation (2).

If we let b denote the positive square root of $a^{2}-c^{2}$,

$$
\begin{equation*}
b=\sqrt{a^{2}-c^{2}} \tag{3}
\end{equation*}
$$

then $a^{2}-c^{2}=b^{2}$ and Equation (2) takes the form

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 . \tag{4}
\end{equation*}
$$

Equation (4) reveals that this ellipse is symmetric with respect to the origin and both coordinate axes. It lies inside the rectangle bounded by the lines $x= \pm a$ and $y= \pm b$. It crosses the axes at the points $(\pm a, 0)$ and $(0, \pm b)$. The tangents at these points are perpendicular to the axes because

$$
\frac{d y}{d x}=-\frac{b^{2} x}{a^{2} y}, \quad \begin{aligned}
& \text { Obtained from Eq. (4) } \\
& \text { by implicit differentiation }
\end{aligned}
$$

which is zero if $x=0$ and infinite if $y=0$.

FIGURE 11.44 An ellipse with its major axis horizontal (Example 2).

FIGURE 11.45 Points on the focal axis of a hyperbola.

The major axis of the ellipse in Equation (4) is the line segment of length $2 a$ joining the points $(\pm a, 0)$. The minor axis is the line segment of length $2 b$ joining the points $(0, \pm b)$. The number a itself is the semimajor axis, the number b the semiminor axis. The number c, found from Equation (3) as

$$
c=\sqrt{a^{2}-b^{2}}
$$

is the center-to-focus distance of the ellipse. If $a=b$ then the ellipse is a circle.
EXAMPLE 2 The ellipse

$$
\begin{equation*}
\frac{x^{2}}{16}+\frac{y^{2}}{9}=1 \tag{5}
\end{equation*}
$$

shown in Figure 11.44 has
Semimajor axis: $a=\sqrt{16}=4, \quad$ Semiminor axis: $b=\sqrt{9}=3$,
Center-to-focus distance: $c=\sqrt{16-9}=\sqrt{7}$,
Foci: $\quad(\pm c, 0)=(\pm \sqrt{7}, 0)$,
Vertices: $(\pm a, 0)=(\pm 4,0)$,
Center: $(0,0)$.
If we interchange x and y in Equation (5), we have the equation

$$
\begin{equation*}
\frac{x^{2}}{9}+\frac{y^{2}}{16}=1 . \tag{6}
\end{equation*}
$$

The major axis of this ellipse is now vertical instead of horizontal, with the foci and vertices on the y-axis. We can determine which way the major axis runs simply by finding the intercepts of the ellipse with the coordinate axes. The longer of the two axes of the ellipse is the major axis.

Standard-Form Equations for Ellipses Centered at the Origin
Foci on the x-axis: $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad(a>b)$
Center-to-focus distance: $c=\sqrt{a^{2}-b^{2}}$
Foci: $\quad(\pm c, 0)$
Vertices: $(\pm a, 0)$
Foci on the y-axis: $\quad \frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1 \quad(a>b)$
Center-to-focus distance: $\quad c=\sqrt{a^{2}-b^{2}}$
Foci: $(0, \pm c)$
Vertices: $\quad(0, \pm a)$
In each case, a is the semimajor axis and b is the semiminor axis.

Hyperbolas

DEFINITIONS A hyperbola is the set of points in a plane whose distances from two fixed points in the plane have a constant difference. The two fixed points are the foci of the hyperbola.

The line through the foci of a hyperbola is the focal axis. The point on the axis halfway between the foci is the hyperbola's center. The points where the focal axis and hyperbola cross are the vertices (Figure 11.45).

FIGURE 11.46 Hyperbolas have two branches. For points on the right-hand branch of the hyperbola shown here, $P F_{1}-P F_{2}=2 a$. For points on the lefthand branch, $P F_{2}-P F_{1}=2 a$. We then let $b=\sqrt{c^{2}-a^{2}}$.

FIGURE 11.47 The hyperbola and its asymptotes in Example 3.

If the foci are $F_{1}(-c, 0)$ and $F_{2}(c, 0)$ (Figure 11.46) and the constant difference is $2 a$, then a point (x, y) lies on the hyperbola if and only if

$$
\begin{equation*}
\sqrt{(x+c)^{2}+y^{2}}-\sqrt{(x-c)^{2}+y^{2}}= \pm 2 a \tag{7}
\end{equation*}
$$

To simplify this equation, we move the second radical to the right-hand side, square, isolate the remaining radical, and square again, obtaining

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}-c^{2}}=1 . \tag{8}
\end{equation*}
$$

So far, this looks just like the equation for an ellipse. But now $a^{2}-c^{2}$ is negative because $2 a$, being the difference of two sides of triangle $P F_{1} F_{2}$, is less than $2 c$, the third side.

The algebraic steps leading to Equation (8) can be reversed to show that every point P whose coordinates satisfy an equation of this form with $0<a<c$ also satisfies Equation (7). A point therefore lies on the hyperbola if and only if its coordinates satisfy Equation (8).

If we let b denote the positive square root of $c^{2}-a^{2}$,

$$
\begin{equation*}
b=\sqrt{c^{2}-a^{2}} \tag{9}
\end{equation*}
$$

then $a^{2}-c^{2}=-b^{2}$ and Equation (8) takes the compact form

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \tag{10}
\end{equation*}
$$

The differences between Equation (10) and the equation for an ellipse (Equation 4) are the minus sign and the new relation

$$
c^{2}=a^{2}+b^{2} . \quad \text { From Eq. (9) }
$$

Like the ellipse, the hyperbola is symmetric with respect to the origin and coordinate axes. It crosses the x-axis at the points $(\pm a, 0)$. The tangents at these points are vertical because

$$
\frac{d y}{d x}=\frac{b^{2} x}{a^{2} y} \quad \begin{aligned}
& \text { Obtained from Eq. (10) by } \\
& \text { implicit differentiation }
\end{aligned}
$$

and this is infinite when $y=0$. The hyperbola has no y-intercepts; in fact, no part of the curve lies between the lines $x=-a$ and $x=a$.

The lines

$$
y= \pm \frac{b}{a} x
$$

are the two asymptotes of the hyperbola defined by Equation (10). The fastest way to find the equations of the asymptotes is to replace the 1 in Equation (10) by 0 and solve the new equation for y :

$$
\underbrace{\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1}_{\text {hyperbola }} \rightarrow \underbrace{\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0}_{0 \text { for } 1} \rightarrow \underbrace{y= \pm \frac{b}{a} x .}_{\text {asymptotes }}
$$

EXAMPLE 3 The equation

$$
\begin{equation*}
\frac{x^{2}}{4}-\frac{y^{2}}{5}=1 \tag{11}
\end{equation*}
$$

is Equation (10) with $a^{2}=4$ and $b^{2}=5$ (Figure 11.47). We have
Center-to-focus distance: $c=\sqrt{a^{2}+b^{2}}=\sqrt{4+5}=3$,
Foci: $(\pm c, 0)=(\pm 3,0), \quad$ Vertices: $\quad(\pm a, 0)=(\pm 2,0)$,
Center: $(0,0)$,
Asymptotes: $\quad \frac{x^{2}}{4}-\frac{y^{2}}{5}=0 \quad$ or $\quad y= \pm \frac{\sqrt{5}}{2} x$.

If we interchange x and y in Equation (11), the foci and vertices of the resulting hyperbola will lie along the y-axis. We still find the asymptotes in the same way as before, but now their equations will be $y= \pm 2 x / \sqrt{5}$.

Standard-Form Equations for Hyperbolas Centered at the Origin

Foci on the x-axis: $\quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad$ Foci on the y-axis: $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$

Center-to-focus distance: $c=\sqrt{a^{2}+b^{2}}$
Foci: $\quad(\pm c, 0)$
Vertices: $(\pm a, 0)$
Asymptotes: $\quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0 \quad$ or $\quad y= \pm \frac{b}{a} x$

Center-to-focus distance: $c=\sqrt{a^{2}+b^{2}}$
Foci: $(0, \pm c)$
Vertices: $\quad(0, \pm a)$
Asymptotes: $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=0 \quad$ or $\quad y= \pm \frac{a}{b} x$

Notice the difference in the asymptote equations (b / a in the first, a / b in the second).

We shift conics using the principles reviewed in Section 1.2, replacing x by $x+h$ and y by $y+k$.

EXAMPLE 4 Show that the equation $x^{2}-4 y^{2}+2 x+8 y-7=0$ represents a hyperbola. Find its center, asymptotes, and foci.

Solution We reduce the equation to standard form by completing the square in x and y as follows:

$$
\begin{aligned}
\left(x^{2}+2 x\right)-4\left(y^{2}-2 y\right) & =7 \\
\left(x^{2}+2 x+1\right)-4\left(y^{2}-2 y+1\right) & =7+1-4 \\
\frac{(x+1)^{2}}{4}-(y-1)^{2} & =1
\end{aligned}
$$

This is the standard form Equation (10) of a hyperbola with x replaced by $x+1$ and y replaced by $y-1$. The hyperbola is shifted one unit to the left and one unit upward, and it has center $x+1=0$ and $y-1=0$, or $x=-1$ and $y=1$. Moreover,

$$
a^{2}=4, \quad b^{2}=1, \quad c^{2}=a^{2}+b^{2}=5
$$

so the asymptotes are the two lines

$$
\frac{x+1}{2}-(y-1)=0 \quad \text { and } \quad \frac{x+1}{2}+(y-1)=0
$$

or

$$
y-1= \pm \frac{1}{2}(x+1)
$$

The shifted foci have coordinates $(-1 \pm \sqrt{5}, 1)$.

EXERCISES 11.6

Identifying Graphs

Match the parabolas in Exercises 1-4 with the following equations:

$$
x^{2}=2 y, \quad x^{2}=-6 y, \quad y^{2}=8 x, \quad y^{2}=-4 x .
$$

Then find each parabola's focus and directrix.
1.

2.

3.

4.

Match each conic section in Exercises 5-8 with one of these equations:

$$
\begin{array}{ll}
\frac{x^{2}}{4}+\frac{y^{2}}{9}=1, & \frac{x^{2}}{2}+y^{2}=1 \\
\frac{y^{2}}{4}-x^{2}=1, & \frac{x^{2}}{4}-\frac{y^{2}}{9}=1 .
\end{array}
$$

Then find the conic section's foci and vertices. If the conic section is a hyperbola, find its asymptotes as well.

5.
7.

8.
6.

Parabolas
Exercises 9-16 give equations of parabolas. Find each parabola's focus and directrix. Then sketch the parabola. Include the focus and directrix in your sketch.
9. $y^{2}=12 x$
10. $x^{2}=6 y$
11. $x^{2}=-8 y$
12. $y^{2}=-2 x$
13. $y=4 x^{2}$
14. $y=-8 x^{2}$
15. $x=-3 y^{2}$
16. $x=2 y^{2}$

Ellipses

Exercises 17-24 give equations for ellipses. Put each equation in standard form. Then sketch the ellipse. Include the foci in your sketch.
17. $16 x^{2}+25 y^{2}=400$
18. $7 x^{2}+16 y^{2}=112$
19. $2 x^{2}+y^{2}=2$
20. $2 x^{2}+y^{2}=4$
21. $3 x^{2}+2 y^{2}=6$
22. $9 x^{2}+10 y^{2}=90$
23. $6 x^{2}+9 y^{2}=54$
24. $169 x^{2}+25 y^{2}=4225$

Exercises 25 and 26 give information about the foci and vertices of ellipses centered at the origin of the $x y$-plane. In each case, find the ellipse's standard-form equation from the given information.
25. Foci: $(\pm \sqrt{2}, 0)$ Vertices: $(\pm 2,0)$
26. Foci: $(0, \pm 4)$ Vertices: $(0, \pm 5)$

Hyperbolas

Exercises 27-34 give equations for hyperbolas. Put each equation in standard form and find the hyperbola's asymptotes. Then sketch the hyperbola. Include the asymptotes and foci in your sketch.
27. $x^{2}-y^{2}=1$
28. $9 x^{2}-16 y^{2}=144$
29. $y^{2}-x^{2}=8$
30. $y^{2}-x^{2}=4$
31. $8 x^{2}-2 y^{2}=16$
32. $y^{2}-3 x^{2}=3$
33. $8 y^{2}-2 x^{2}=16$
34. $64 x^{2}-36 y^{2}=2304$

Exercises 35-38 give information about the foci, vertices, and asymptotes of hyperbolas centered at the origin of the $x y$-plane. In each case, find the hyperbola's standard-form equation from the information given.
35. Foci: $(0, \pm \sqrt{2})$
36. Foci: $(\pm 2,0)$

Asymptotes: $y= \pm x$
Asymptotes: $y= \pm \frac{1}{\sqrt{3}} x$
37. Vertices: $(\pm 3,0)$

Asymptotes: $y= \pm \frac{4}{3} x$
38. Vertices: $(0, \pm 2)$

Asymptotes: $y= \pm \frac{1}{2} x$

Shifting Conic Sections

You may wish to review Section 1.2 before solving Exercises 39-56.
39. The parabola $y^{2}=8 x$ is shifted down 2 units and right 1 unit to generate the parabola $(y+2)^{2}=8(x-1)$.
a. Find the new parabola's vertex, focus, and directrix.
b. Plot the new vertex, focus, and directrix, and sketch in the parabola.
40. The parabola $x^{2}=-4 y$ is shifted left 1 unit and up 3 units to generate the parabola $(x+1)^{2}=-4(y-3)$.
a. Find the new parabola's vertex, focus, and directrix.
b. Plot the new vertex, focus, and directrix, and sketch in the parabola.
41. The ellipse $\left(x^{2} / 16\right)+\left(y^{2} / 9\right)=1$ is shifted 4 units to the right and 3 units up to generate the ellipse

$$
\frac{(x-4)^{2}}{16}+\frac{(y-3)^{2}}{9}=1 .
$$

a. Find the foci, vertices, and center of the new ellipse.
b. Plot the new foci, vertices, and center, and sketch in the new ellipse.
42. The ellipse $\left(x^{2} / 9\right)+\left(y^{2} / 25\right)=1$ is shifted 3 units to the left and 2 units down to generate the ellipse

$$
\frac{(x+3)^{2}}{9}+\frac{(y+2)^{2}}{25}=1 .
$$

a. Find the foci, vertices, and center of the new ellipse.
b. Plot the new foci, vertices, and center, and sketch in the new ellipse.
43. The hyperbola $\left(x^{2} / 16\right)-\left(y^{2} / 9\right)=1$ is shifted 2 units to the right to generate the hyperbola

$$
\frac{(x-2)^{2}}{16}-\frac{y^{2}}{9}=1 .
$$

a. Find the center, foci, vertices, and asymptotes of the new hyperbola.
b. Plot the new center, foci, vertices, and asymptotes, and sketch in the hyperbola.
44. The hyperbola $\left(y^{2} / 4\right)-\left(x^{2} / 5\right)=1$ is shifted 2 units down to generate the hyperbola

$$
\frac{(y+2)^{2}}{4}-\frac{x^{2}}{5}=1 .
$$

a. Find the center, foci, vertices, and asymptotes of the new hyperbola.
b. Plot the new center, foci, vertices, and asymptotes, and sketch in the hyperbola.

Exercises 45-48 give equations for parabolas and tell how many units up or down and to the right or left each parabola is to be shifted. Find an equation for the new parabola, and find the new vertex, focus, and directrix.
45. $y^{2}=4 x$, left 2 , down 3
46. $y^{2}=-12 x$, right 4 , up 3
47. $x^{2}=8 y$, right 1 , down 7
48. $x^{2}=6 y$, left 3 , down 2

Exercises 49-52 give equations for ellipses and tell how many units up or down and to the right or left each ellipse is to be shifted. Find an equation for the new ellipse, and find the new foci, vertices, and center.
49. $\frac{x^{2}}{6}+\frac{y^{2}}{9}=1$, left 2 , down 1
50. $\frac{x^{2}}{2}+y^{2}=1$, right 3 , up 4
51. $\frac{x^{2}}{3}+\frac{y^{2}}{2}=1$, right 2, up 3
52. $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1, \quad$ left 4 , down 5

Exercises 53-56 give equations for hyperbolas and tell how many units up or down and to the right or left each hyperbola is to be shifted. Find an equation for the new hyperbola, and find the new center, foci, vertices, and asymptotes.
53. $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$, right 2 , up 2
54. $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$, left 2 , down 1
55. $y^{2}-x^{2}=1$, left 1 , down 1
56. $\frac{y^{2}}{3}-x^{2}=1$, right 1 , up 3

Find the center, foci, vertices, asymptotes, and radius, as appropriate, of the conic sections in Exercises 57-68.
57. $x^{2}+4 x+y^{2}=12$
58. $2 x^{2}+2 y^{2}-28 x+12 y+114=0$
59. $x^{2}+2 x+4 y-3=0$
60. $y^{2}-4 y-8 x-12=0$
61. $x^{2}+5 y^{2}+4 x=1$
62. $9 x^{2}+6 y^{2}+36 y=0$
63. $x^{2}+2 y^{2}-2 x-4 y=-1$
64. $4 x^{2}+y^{2}+8 x-2 y=-1$
65. $x^{2}-y^{2}-2 x+4 y=4$
66. $x^{2}-y^{2}+4 x-6 y=6$
67. $2 x^{2}-y^{2}+6 y=3$
68. $y^{2}-4 x^{2}+16 x=24$

Theory and Examples
69. If lines are drawn parallel to the coordinate axes through a point P on the parabola $y^{2}=k x, k>0$, the parabola partitions the rectangular region bounded by these lines and the coordinate axes into two smaller regions, A and B.
a. If the two smaller regions are revolved about the y-axis, show that they generate solids whose volumes have the ratio $4: 1$.
b. What is the ratio of the volumes generated by revolving the regions about the x-axis?

70. Suspension bridge cables hang in parabolas The suspension bridge cable shown in the accompanying figure supports a uniform load of w pounds per horizontal foot. It can be shown that if H is the horizontal tension of the cable at the origin, then the curve of the cable satisfies the equation

$$
\frac{d y}{d x}=\frac{w}{H} x .
$$

Show that the cable hangs in a parabola by solving this differential equation subject to the initial condition that $y=0$ when $x=0$.

71. The width of a parabola at the focus Show that the number $4 p$ is the width of the parabola $x^{2}=4 p y(p>0)$ at the focus by showing that the line $y=p$ cuts the parabola at points that are $4 p$ units apart.
72. The asymptotes of $\left(x^{2} / a^{2}\right)-\left(y^{2} / b^{2}\right)=1$ Show that the vertical distance between the line $y=(b / a) x$ and the upper half of the right-hand branch $y=(b / a) \sqrt{x^{2}-a^{2}}$ of the hyperbola $\left(x^{2} / a^{2}\right)-\left(y^{2} / b^{2}\right)=1$ approaches 0 by showing that

$$
\lim _{x \rightarrow \infty}\left(\frac{b}{a} x-\frac{b}{a} \sqrt{x^{2}-a^{2}}\right)=\frac{b}{a} \lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}-a^{2}}\right)=0 .
$$

Similar results hold for the remaining portions of the hyperbola and the lines $y= \pm(b / a) x$.
73. Area Find the dimensions of the rectangle of largest area that can be inscribed in the ellipse $x^{2}+4 y^{2}=4$ with its sides parallel to the coordinate axes. What is the area of the rectangle?
74. Volume Find the volume of the solid generated by revolving the region enclosed by the ellipse $9 x^{2}+4 y^{2}=36$ about the (a) x-axis, (b) y-axis.
75. Volume The "triangular" region in the first quadrant bounded by the x-axis, the line $x=4$, and the hyperbola $9 x^{2}-4 y^{2}=36$ is revolved about the x-axis to generate a solid. Find the volume of the solid.
76. Tangents Show that the tangents to the curve $y^{2}=4 p x$ from any point on the line $x=-p$ are perpendicular.
77. Tangents Find equations for the tangents to the circle $(x-2)^{2}+(y-1)^{2}=5$ at the points where the circle crosses the coordinate axes.
78. Volume The region bounded on the left by the y-axis, on the right by the hyperbola $x^{2}-y^{2}=1$, and above and below by the lines $y= \pm 3$ is revolved about the y-axis to generate a solid. Find the volume of the solid.
79. Centroid Find the centroid of the region that is bounded below by the x-axis and above by the ellipse $\left(x^{2} / 9\right)+\left(y^{2} / 16\right)=1$.
80. Surface area The curve $y=\sqrt{x^{2}+1}, 0 \leq x \leq \sqrt{2}$, which is part of the upper branch of the hyperbola $y^{2}-x^{2}=1$, is revolved about the x-axis to generate a surface. Find the area of the surface.
81. The reflective property of parabolas The accompanying figure shows a typical point $P\left(x_{0}, y_{0}\right)$ on the parabola $y^{2}=4 p x$. The line L is tangent to the parabola at P. The parabola's focus lies at $F(p, 0)$. The ray L^{\prime} extending from P to the right is parallel to the x-axis. We show that light from F to P will be reflected out along L^{\prime} by showing that β equals α. Establish this equality by taking the following steps.
a. Show that $\tan \beta=2 p / y_{0}$.
b. Show that $\tan \phi=y_{0} /\left(x_{0}-p\right)$.
c. Use the identity

$$
\tan \alpha=\frac{\tan \phi-\tan \beta}{1+\tan \phi \tan \beta}
$$

to show that $\tan \alpha=2 p / y_{0}$.
Since α and β are both acute, $\tan \beta=\tan \alpha$ implies $\beta=\alpha$.
This reflective property of parabolas is used in applications like car headlights, radio telescopes, and satellite TV dishes.

11.7 Conics in Polar Coordinates

Polar coordinates are especially important in astronomy and astronautical engineering because satellites, moons, planets, and comets all move approximately along ellipses, parabolas, and hyperbolas that can be described with a single relatively simple polar coordinate equation. We develop that equation here after first introducing the idea of a conic section's eccentricity. The eccentricity reveals the conic section's type (circle, ellipse, parabola, or hyperbola) and the degree to which it is "squashed" or flattened.

Eccentricity

Although the center-to-focus distance c does not appear in the standard Cartesian equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \quad(a>b)
$$

for an ellipse, we can still determine c from the equation $c=\sqrt{a^{2}-b^{2}}$. If we fix a and vary c over the interval $0 \leq c \leq a$, the resulting ellipses will vary in shape. They are circles if $c=0$ (so that $a=b$) and flatten, becoming more oblong, as c increases. If $c=a$, the foci and vertices overlap and the ellipse degenerates into a line segment. Thus we are led to consider the ratio $e=c / a$. We use this ratio for hyperbolas as well, except in this

