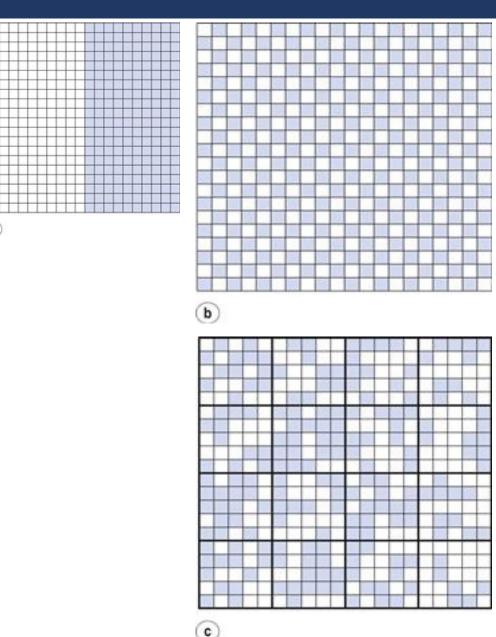



# Solids Mixing

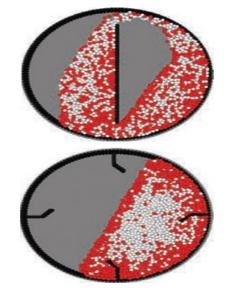
## **Solid Mixing**


- Mixing is considered a critical factor, especially in the **case of potent drugs and low-dose** drugs where high amounts of adjuvants are added.
- Solid mixing is similar to liquid mixing.
- However, it shows some **differences** mainly come from that solid mixture **after mixing** (and sometimes during mixing) is subjected to **demixing or segregation**.
- The diverse characteristics of particles such as size, shape, volume, surface area, density, porosity, and flow charge contribute to the solid mixing.





# **Solid Mixing**


- Solid mixing can be represented with the following model where
- (A) is a complete segregation state.
- (B) is the Ideal mixing state (perfect mix).
- (C) is Random Mixing.
- However, **B** (perfect mix) is virtually impossible to get in practice with any mixing equipment.
- The best powder mixing process will result in a case of the random mix where the probability (chance) of finding one type of particle at any point in the mixture is equal to its proportion in the mixture.



#### **Practical Consideration in Working with Powder Mixing**

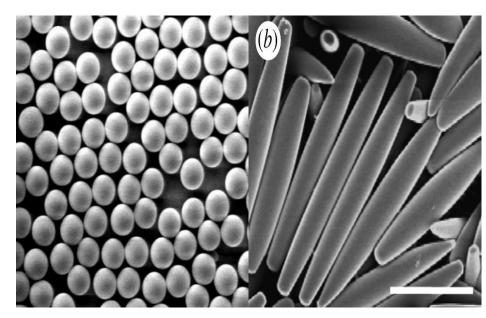
#### Segregation or demixing:

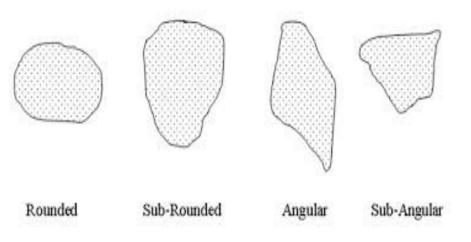
- Segregation is the central problem associated with the mixing and handling of the solid particles,
- The powder can segregate 1- during mixing and/or 2- during handling and 3- processing after mixing.
- **Causes**: Solids tend to segregate by virtue of differences in the particle **size**, **density**, **shape**, and other properties of the particles of which they are composed.
- The second requirement for segregation can be met by the Earth's gravitational field, or by a centrifugal, electrical, or magnetic field generated in the course of processing





## **Factors Affecting Demixing**


- **A. Particle size and size distribution**: The difference in particle size between the components is the **main cause** of segregation in powder mixes.
- Small particle tends to fill the gaps (void) between larger particles and move toward the bottom of the mass.
- **The larger** particle will have higher kinetic energy and will move to a larger distance compared to small particles.
- This segregation problem can be decreased by:
- Selection of a particle with a close size range that can be achieved by sieving (to remove fine or lumps).
- Milling of the component before mixing to get a homogenous particle size below 30μm, at which size segregation does not tend to cause serious problems
- **3.** Granulation of the powder mix (enlarging the particle size). College of Pharmacy-Industrial Pharmacy I - 4<sup>th</sup> stage-Second Semester


Mixing

# **Factors Affecting Demixing**

#### **B.** Particle shape:

- Particle shape is important because as the shape of a particle deviates more significantly from a spherical form, → the free movement it experiences along its major axis also decreases.
  - Spherical particles exhibit the greatest flowability and are therefore **more easily** mixed **but** they also segregate more easily than non-spherical particles.
  - Irregular or Needle shaped particles may become interlocked decreasing the tendency to segregate once mixing has occurred.
- Controlled crystallization during production of the drug/excipients to give components of a particular crystal shape or size range **reduces the tendency** to segregate.

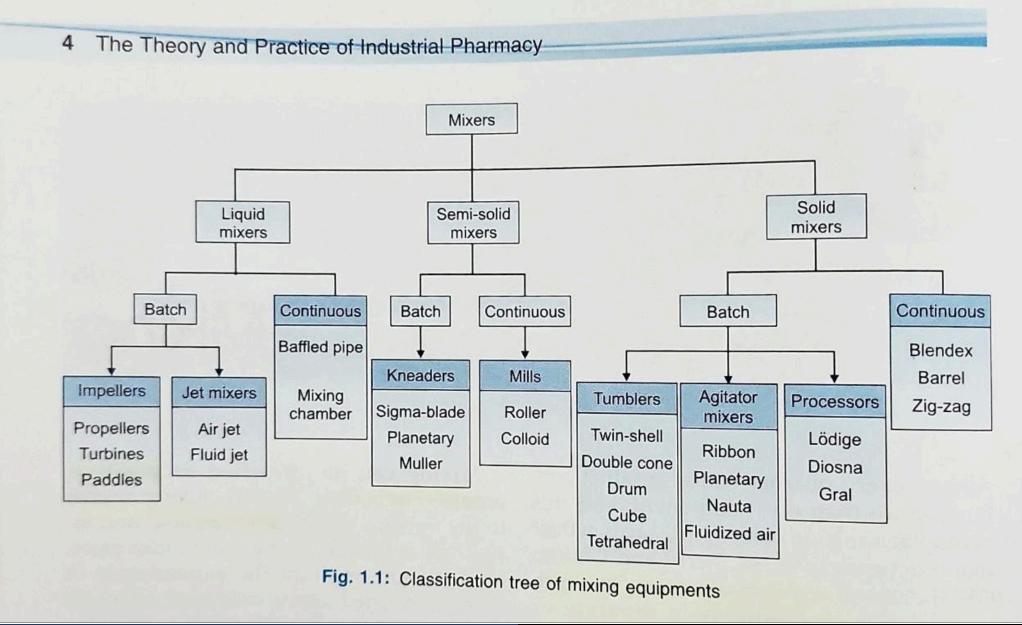




Mixing

# **Factors Affecting Demixing**

- C. Particle charge:
- The mixing of particles whose surfaces are non-conducting (electrically) often results in the **generation of surface charges**, as evidenced by a tendency of the powder to **clump** following a period of agitation.
- Surface charging of particles during mixing is undesirable, for it tends to **decrease** the process of inter-particulate "diffusion."


#### **D.** Particle density: (minor problem)

- If components are of different densities, the **denser particles** will have a tendency to **move downward** regardless of their particle size.
- Most materials used in the pharmaceutical industry are of close densities and this problem is **not common in powder mixing**.

## **Mechanism of Mixing (For Solids)**

- **1.** Convective Mixing: resembles bulk transport in fluid mixing.
  - It includes moving a large bulk of solid at once.
  - This can occur by inversion of the powder bed by blades, paddle, a revolving screw, or by inverting the whole container such as in a V-shape mixer.
- 2. Shear mixing: As a result of forces within the particulate mass, slip planes are set up and this gives rise to laminar flow.
  - When shear occurs between regions of different compositions & parallel to their interface, it reduces the scale of segregation by thinning the dissimilar layers.
- **3. Diffusive mixing:** When a random motion of particles within a powder bed causes them to change position relative to one another. Such an exchange of positions by single particles results in a reduction of the intensity of segregation.
  - Diffusive mixing occurs at the interfaces of dissimilar regions that are undergoing shear and therefore results from shear mixing.

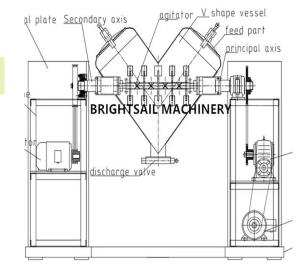
#### Equipment



College of Pharmacy-Industrial Pharmacy I - 4<sup>th</sup> stage-Second Semester

## 1- Tumbler/ Blender (batch mixers)

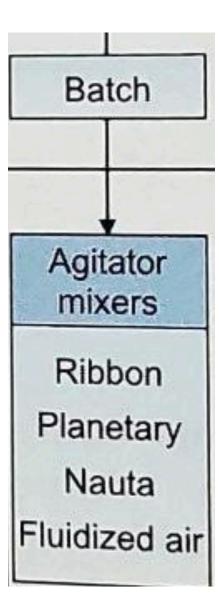
- **Tumbler/blenders**: consist of a container of different geometrical shapes **rotated** around its axis and cause movement of materials in all planes.
  - The resulting tumbling motion is accentuated through baffles, lifter blades, or simply by the shape of the container.
- It can be in different shapes such as **twin shells**, **double cones**, **cubes**, **drums**, **and tetrahedral** blenders are commercially available.
- Of these types, the **twin-shape mixer (V-shape** mixer) is the **most preferred** one, resulting in **satisfactory mixing in a reasonable time**.
- These types of solid mixers are:
  - Efficient, not aggressive (good for friable powders),
  - And **preferable** when mixing powders that have different particle sizes




#### V-Shape Mixer (Twin Shell Mixer)

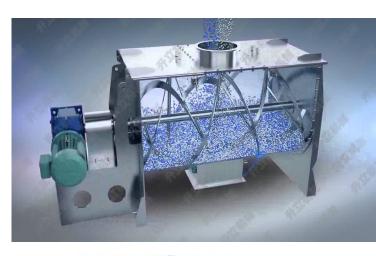
- It consists of **two cylinders** connected at a 45° angle.
- When rotates, the material is collected to the bottom and then splits into two halves when rotated in the other direction.
  - This is quite effective **because** the bulk transport (convective) and shear, which occur in tumbling mixers, generally are accentuated by this design.
- The rotation speed should be adjusted depending on 1- the size of the mixer and 2- the amount of material existing.
- 1. Too slow rotation results in **no mixing** (insufficient tumbling and does not generate rapid shear rates).
- 2. Too fast results in centrifugal action that holds the material to one side of the mixer and results in **no mixing**.

<u>https://youtu.be/SOoOmhrPLdQ</u>
*College of Pharmacy- Industrial Pharmacy I - 4<sup>th</sup> stage- Second Semester*






#### 2-Agitator Mixers (batch mixers)


- Agitator mixers: consist of a **fixed container** that contains a moving screw, a paddle, or a plate to mix the powder materials.
- These types of mixers are more effective in mixing wet powders that do not mix well using tumbler mixers. This is because these mixers do not depend entirely on gravity.
- The **high shear** forces that are set up are effective in breaking up lumps or aggregates.

• There are **three** types of agitato mixers:



# Agitator Mixers:A- Ribbon mixer/blender

- **Design**: Consists of a horizontal cylindrical tank usually opening at the top and fitted with helical blades or ribbons.
- **Operation**: The blades are mounted on the horizontal axle by struts and are rotated to circulate the material to be mixed
- The helical blades are **wound (turned)** (in most cases) in opposite directions to **provide for the movement of material in both directions** along the axis of the tank.
- Although little axial mixing in the vicinity of the shaft occurs, mixtures with high homogeneity can be produced by **prolonged mixing** even when the components differ in particle size, shape, or density, or there is some tendency to aggregate.



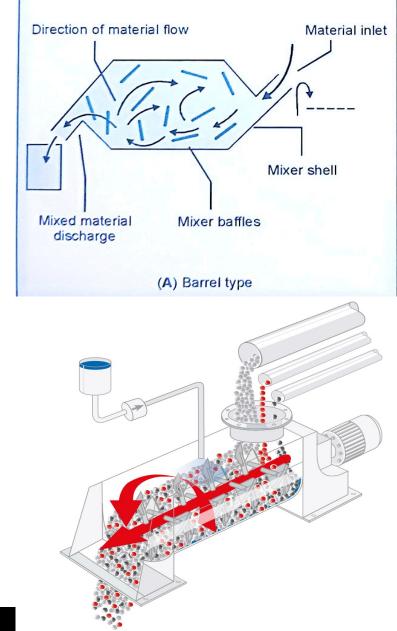


#### 3- Rapid Mixer Granulator (batch mixers)

- Rapid mixer granulator:
- **Newer models** that <u>can perform</u> **both** wet and dry mixing efficiently in lesser time.
- This means it can perform dual actions like 1- mixing and 2- tablet granulation which is an important process in tablet formulation.
- An example of these mixers is the Lödige mixer.
  - It's a <u>high-shear</u> mixer that consists of a horizontal cylindrical shell equipped with a series of plow-shaped mixing tools and one or more high-speed blending chopper assemblies mounted at the rear of the mixer.
- <u>https://youtu.be/I-33cIrn8vc</u> College of Pharmacy- Industrial Pharmacy I - 4<sup>th</sup> stage- Second Semester

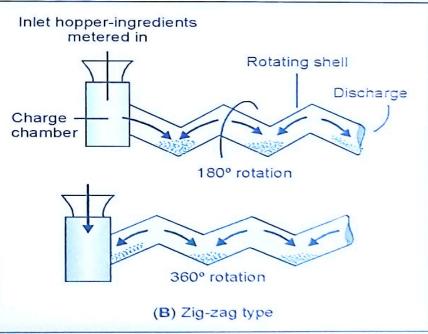


Mixing


#### **Continuous mixers**

- A characteristic of solids mixing equipment is that all else being equal, **but:**
- Mixtures produced by **large mixers** have greater variations in composition than those produced by **small mixers**.
- This is an important consideration when relatively small portions of the mixture are required to fall consistently within a narrow composition range. → it is recommended to use batch mixers for small quantities.
- Continuous mixing processes are somewhat analogous to those discussed under fluid mixing.
- Metered quantities of the powders or granules are passed through a device that reduces both the scale and intensity of segregation, usually by impact or shearing action.

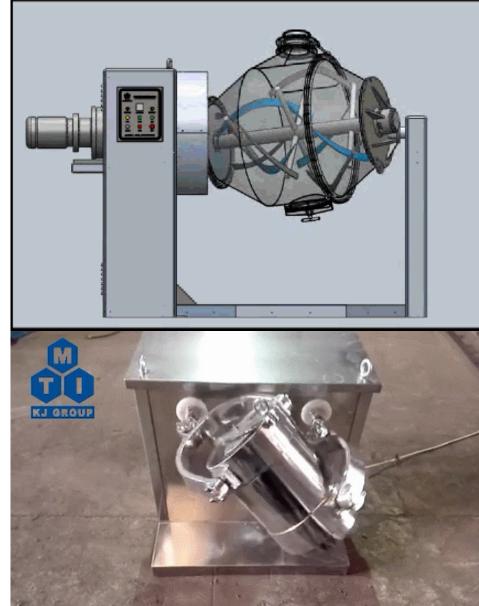



#### **Barrel Type Continuous Mixer**

- In this mixer, the material is mixed under a tumbling motion.
- The presence of **baffles** further enhances the mixing.
- **Operation**: When the material approaches the midpoint of the shell, a set of baffles causes a part of the material to move **backward**.
- Such a mechanism provides an intense mixing of ingredients



#### Zig-zag Continuous Blender


- **Design**: It consists of several "V"-shaped blenders connected in series.
- **Operation**: When the blender is inverted, the material splits into two portions, one-half of the material moves **backward**, while the other moves **forward**.
  - In each rotation, a part of the material moves toward the discharge end.





#### **Mixer Selection**

- Mixer Properties:
- An **ideal mixer** should produce a complete blend rapidly with as **gentle** (slow speed) mixing action as possible to **avoid product damage**.
- It should be:
- 1. Dust-tight,
- 2. Cleaned easily,
- 3. Discharged easily, and
- 4. Requires low maintenance and low power consumption.



#### • Tumbler Mixers:

- 1. Rotating shell mixers suffer from poor cross-flow along the axis.  $\rightarrow$ 
  - The addition of **baffles or inclining the drum** on the axis increases cross-flow and improves the mixing action.
- 2. In **cubical and polyhedron-shaped blenders**, due to their flat surfaces, the powder is subjected more to **sliding** than a rolling action, a motion that **is not** conducive to efficient mixing.
- 3. In double-cone blenders, the mixing pattern provides a good cross-flow with a rolling rather than sliding motion.
- 4. The uneven length of each shell in a **twin-shell** blender provides **additional** mixing action when the powder bed recombines during each revolution of the blender. Twin-shell and double-cone blenders are recommended for precision blending.

## **Mixer Selection Mixer Properties:**

#### • Agitator Mixers:

- 1. The **shearing action** that develops between moving blades and troughs (the tank) in agitator mixers serves to **break down powder agglomerates**.
- 2. Ribbon mixers are not precision blenders and also suffer from the disadvantage of being 1- more difficult to clean than tumblers and 2- having a higher power requirement.
- 3. The **1** mechanical **heat build-up** and **2** the relatively higher power requirement are the **drawbacks** also associated with **Sigma blades** and **planetary mixers**.
  - However, the shorter time interval necessary to achieve a satisfactory blend may offset these factors.
- 4. Blendex provides efficient batch and continuous mixing for a wide variety of solids without particle size reduction and heat generation.

#### **Mixer Selection:**

## **Material Property**

- Powders that are **1- not** free-flowing or **2** that exhibit high forces of cohesion or adhesion between particles of similar or dissimilar composition are often **difficult** to mix owing to agglomeration.
- The clumps of particles can be broken down in such cases by the use of mixers that generate high shear forces or that subject the powder to impact.
- The use of agitators preferably **planetary** and **sigma blade mixers** is recommended for such powders.
- For **strongly cohesive materials**, it is typically necessary to fragment agglomerates through the introduction of high shear, "intensification," devices such **as agitators or mills** that energetically deform grains on the finest scale.