Lec.

K-map forms:

In many digital circuits and practical problems, we need to find expressions with minimum variables. We can minimize Boolean expressions of 3,4 variables very easily using K-map without using any Boolean algebra theorems. K-map can take two forms:

1. Sum of product (SOP)
2. Product of Sum (POS)

According to the need of problem. K-map is a table-like representation, but it gives more information than the TABLE. We fill a grid of the K-map with 0's and 1 's then solve it by making groups.

Steps to Solve Expression using K-map

1. Select the K-map according to the number of variables.
2. Identify minterms or maxterms as given in the problem.
3. For SOP put 1's in blocks of K-map respective to the minterms (0's elsewhere).
4. For POS put 0's in blocks of K-map respective to the max terms (1's elsewhere).
5. Make rectangular groups containing total terms in power of two like $2,4,8$..(except 1) and try to cover as many elements as you can in one group.
6 . From the groups made in step 5 find the product terms and sum them up for SOP form.

SOP FORM

1. K-map of 3 variables

K-map SOP form for 3 variables
$Z=? A, B, C(1,3,6,7)$

From red group we get product term- $A^{\prime} C$
From green group we get product term- $A B$
Summing these product terms we get- Final expression ($A^{\prime} \mathbf{C}+\mathrm{AB}$)

2. K-map for 4 variables

SOP(MINTERMS)
16 Blocks $=1$
s Blocks $=1$ variable term
4 Blocks $=\mathbf{2}$ variable term
2 Blocks $=3$ variable term
1 Block $=4$ variable term

K-map 4 variable SOP form
$F(P, Q, R, S)=?(0,2,5,7,8,10,13,15)$
From red group we get product term- QS
From green group we get product term- Q'S'
Summing these product terms we get- Final expression (QS+Q'S').

POS FORM

1. K-map of 3 variables

2. Blocks $=0$

4 Blocks $=1$ variable term
2 Elocks $=2$ variable term
1 Block $=3$ variable term
$F(A, B, C)=?(0,3,6,7)$

From red group we find terms
A B
Taking complement of these two
A' B'
Now sum up them
(A' + B')
From brown group we find terms
B C
Taking complement of these two terms
B' C'
Now sum up them
($B^{\prime}+C^{\prime}$)
From yellow group we find terms
A' B' C'
Taking complement of these two
A B C
Now sum up them
($A+B+C$)
We will take product of these three terms : Final expression -
($\left.A^{\prime}+B^{\prime}\right)\left(B^{\prime}+C^{\prime}\right)(A+B+C)$
2. K-map of 4 variables

$F(A, B, C, D)=?(3,5,7,8,10,11,12,13)$

$A B$	00	01	11	10
00		${ }^{1} 1$	$0{ }_{3}$	$1{ }_{2}$
01		0	O_{7}	
11		$0{ }_{13}$	$1{ }^{15}$	
10	$0{ }_{8}$	19	$\begin{array}{l\|} 0 \\ \hline 11 \\ \hline \end{array}$	0

From green group we find terms
C' D B
Taking their complement and summing them
($C+D^{\prime}+B^{\prime}$)
From red group we find terms
C D A'
Taking their complement and summing them
(C'+D'+A)
From blue group we find terms
A C' D'
Taking their complement and summing them
($A^{\prime}+C+D$)
From brown group we find terms
A B' C
Taking their complement and summing them
(A' $+B+C^{\prime}$)
Finally we express these as product $-\left(C+D^{\prime}+B^{\prime}\right) \cdot\left(C^{\prime}+D^{\prime}+A\right) \cdot\left(A^{\prime}+C+D\right) \cdot\left(A^{\prime}+B+C^{\prime}\right)$
PITFALL- *Always remember POS ? (SOP)'
*The correct form is (POS of F)=(SOP of F')'

