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is missing. The reason the graphs differ is that many calculators and computer soft-
ware programs calculate as Since the logarithmic function is not defined for
negative values of x, the computing device can produce only the right branch, where

(Logarithmic and exponential functions are introduced in the next two sections.)
To obtain the full picture showing both branches, we can graph the function

This function equals except at (where ƒ is undefined, although ). The
graph of ƒ is shown in Figure 1.55b.

01>3
= 0x = 0x1>3

ƒsxd =
x

ƒ x ƒ

#
ƒ x ƒ

1>3 .
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e s1>3dln x .x1>3x 6 0

Exercises 1.4

Choosing a Viewing Window
In Exercises 1–4, use a graphing calculator or computer to determine
which of the given viewing windows displays the most appropriate
graph of the specified function.

1.

a. by b. by 

c. by d. by 

2.

a. by b. by 

c. by d. by 

3.

a. by b. by 

c. by d. by 

4.

a. by b. by 

c. by [0, 10] d. by 

Finding a Viewing Window
In Exercises 5–30, find an appropriate viewing window for the given
function and use it to display its graph.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18. y = 1 -

1
x + 3

y =

x + 3
x + 2

y = ƒ x2
- x ƒy = ƒ x2

- 1 ƒ

y = x2>3s5 - xdy = 5x2>5
- 2x

y = x1>3sx2
- 8dy = 2x - 3x2>3

ƒsxd = x2s6 - x3dƒsxd = x29 - x2

ƒsxd = 4x3
- x4ƒsxd = x5

- 5x4
+ 10

ƒsxd =

x3

3
-

x2

2
- 2x + 1ƒsxd = x4

- 4x3
+ 15

[-10, 10][-10, 10][-3, 7]

[-1, 4][-2, 6][-2, 2][-2, 2]

ƒsxd = 25 + 4x - x2

[-15, 25][-4, 5][-20, 20][-4, 4]

[-10, 10][-5, 5][-1, 1][-1, 1]

ƒsxd = 5 + 12x - x3

[-100, 100][-20, 20][-10, 20][-5, 5]

[-10, 10][-3, 3][-5, 5][-1, 1]

ƒsxd = x3
- 4x2

- 4x + 16

[-25, 15][-5, 5][-10, 10][-10, 10]

[-5, 5][-2, 2][-1, 1][-1, 1]

ƒsxd = x4
- 7x2

+ 6x

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. Graph the lower half of the circle defined by the equation

32. Graph the upper branch of the hyperbola 

33. Graph four periods of the function 

34. Graph two periods of the function 

35. Graph the function 

36. Graph the function 

Graphing in Dot Mode
Another way to avoid incorrect connections when using a graphing
device is through the use of a “dot mode,” which plots only the points.
If your graphing utility allows that mode, use it to plot the functions in
Exercises 37–40.

37. 38.

39. 40. y =

x3
- 1

x2
- 1

y = x:x;
y = sin 

1
xy =

1
x - 3

ƒsxd = sin3 x .

ƒsxd = sin 2x + cos 3x .

ƒsxd = 3 cot 
x
2

+ 1.

ƒsxd = -  tan 2x .

y2
- 16x2

= 1.

x2
+ 2x = 4 + 4y - y2 .

y = x2
+

1
50

 cos 100xy = x +

1
10

 sin 30x

y =

1
10

 sin a x
10
by = cos a x

50
b

y = 3 cos 60xy = sin 250x

ƒsxd =

x2
- 3

x - 2
ƒsxd =

6x2
- 15x + 6

4x2
- 10x

ƒsxd =

8
x2

- 9
ƒsxd =

x - 1
x2

- x - 6

ƒsxd =

x2
- 1

x2
+ 1

ƒsxd =

x2
+ 2

x2
+ 1T

T

T

1.5 Exponential Functions

Exponential functions are among the most important in mathematics and occur in a wide
variety of applications, including interest rates, radioactive decay, population growth, the
spread of a disease, consumption of natural resources, the earth’s atmospheric pressure,
temperature change of a heated object placed in a cooler environment, and the dating of
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1.5 Exponential Functions 35

fossils. In this section we introduce these functions informally, using an intuitive approach.
We give a rigorous development of them in Chapter 7, based on important calculus ideas
and results.

Exponential Behavior

When a positive quantity P doubles, it increases by a factor of 2 and the quantity becomes
2P. If it doubles again, it becomes and a third doubling gives 
Continuing to double in this fashion leads us to the consideration of the function

We call this an exponential function because the variable x appears in the
exponent of Functions such as and are other examples of ex-
ponential functions. In general, if is a positive constant, the function

is the exponential function with base a.

EXAMPLE 1 In 2000, $100 is invested in a savings account, where it grows by accru-
ing interest that is compounded annually (once a year) at an interest rate of 5.5%. 
Assuming no additional funds are deposited to the account and no money is withdrawn,
give a formula for a function describing the amount A in the account after x years have
elapsed.

Solution If at the end of the first year the amount in the account is the original
amount plus the interest accrued, or

At the end of the second year the account earns interest again and grows to

Continuing this process, after x years the value of the account is

This is a multiple of the exponential function with base 1.055. Table 1.4 shows the
amounts accrued over the first four years. Notice that the amount in the account each year
is always 1.055 times its value in the previous year.

A = 100 # (1.055)x.

P = 100(1 + 0.055) # (1.055P) = (1.055)2P = 100 # (1.055)2.

P + a 5.5
100
bP = (1 + 0.055)P = (1.055)P.

P = 100,

ƒ(x) = ax

a Z 1
h(x) = (1>2)xg(x) = 10x2x.

ƒ(x) = 2x.

2(22P) = 23P.2(2P) = 22P,

TABLE 1.4 Savings account growth

Year Amount (dollars) Increase (dollars)

2000 100

2001 5.50

2002 5.80

2003 6.12

2004 6.46100(1.055)4
= 123.88

100(1.055)3
= 117.42

100(1.055)2
= 111.30

100(1.055) = 105.50

In general, the amount after x years is given by where r is the interest rate
(expressed as a decimal).

P(1 + r)x,

Don’t confuse with the power ,
where the variable x is the base, not the
exponent.

x22x
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36 Chapter 1: Functions

For integer and rational exponents, the value of an exponential function is
obtained arithmetically as follows. If is a positive integer, the number is given by
multiplying a by itself n times:

1442443
n factors

If then and if for some positive integer n, then

If for some positive integer n, then

which is the positive number that when multiplied by itself n times gives a. If is
any rational number, then

If x is irrational, the meaning of is not so clear, but its value can be defined by con-
sidering values for rational numbers that get closer and closer to x. This informal approach
is based on the graph of the exponential function. In Chapter 7 we define the meaning in a
rigorous way.

We displayed the graphs of several exponential functions in Section 1.1, and show
them again here in Figure 1.56. These graphs describe the values of the exponential func-
tions for all real inputs x. The value at an irrational number x is chosen so that the graph of

has no “holes” or “jumps.” Of course, these words are not mathematical terms, but they
do convey the informal idea. We mean that the value of , when x is irrational, is chosen
so that the function is continuous, a notion that will be carefully explored in the
next chapter. This choice ensures the graph retains its increasing behavior when or
decreasing behavior when (see Figure 1.56).

Arithmetically, the graphical idea can be described in the following way, using the ex-
ponential as an illustration. Any particular irrational number, say has
a decimal expansion

We then consider the list of numbers, given as follows in the order of taking more and
more digits in the decimal expansion,

(1)

We know the meaning of each number in list (1) because the successive decimal approxi-
mations to given by 1, 1.7, 1.73, 1.732, and so on, are all rational numbers. As these
decimal approximations get closer and closer to , it seems reasonable that the list of
numbers in (1) gets closer and closer to some fixed number, which we specify to be  .

Table 1.5 illustrates how taking better approximations to gives better approxima-
tions to the number . It is the completeness property of the real numbers
(discussed briefly in Appendix 6) which guarantees that this procedure gives a single number
we define to be (although it is beyond the scope of this text to give a proof ). In a similar
way, we can identify the number (or ) for any irrational x. By identifying the
number for both rational and irrational x, we eliminate any “holes” or “gaps” in the graph
of . In practice you can use a calculator to find the number for irrational x, taking suc-
cessive decimal approximations to x and creating a table similar to Table 1.5.

Exponential functions obey the familiar rules of exponents listed on the next page. 
It is easy to check these rules using algebra when the exponents are integers or rational
numbers. We prove them for all real exponents in Chapters 4 and 7.

axax
ax

ax, a 7 02x
213

213
L 3.321997086

23
223

23
23

21, 21.7, 21.73, 21.732, 21.7320, 21.73205, . . . .

23 = 1.732050808 . . . .

x = 23,ƒ(x) = 2x

0 6 a 6 1
a 7 1,

ƒ(x) = ax
ax

ax

ax

ap>q
= 2q ap

= A2q a Bp.
x = p>q

a1>n
= 2n a ,

x = 1>n
a-n

=
1
an = a1a b

n

.

x = -na0
= 1,x = 0,

an
= a # a # Á # a .

anx = n
ƒ(x) = ax

(a)  y � 2x, y � 3x, y � 10x
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x

y � 2x

y � 3x
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(b) y � 2–x, y � 3–x, y � 10–x
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y � 3–x

y � 10–x
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FIGURE 1.56 Graphs of exponential
functions.

TABLE 1.5 Values of for 
rational r closer and closer to

r

1.0 2.000000000

1.7 3.249009585

1.73 3.317278183

1.732 3.321880096

1.7320 3.321880096

1.73205 3.321995226

1.732050 3.321995226

1.7320508 3.321997068

1.73205080 3.321997068

1.732050808 3.321997086

2r

23
213
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1.5 Exponential Functions 37

EXAMPLE 2 We illustrate using the rules for exponents.

1.

2.

3.

4.

5.

The Natural Exponential Function 

The most important exponential function used for modeling natural, physical, and eco-
nomic phenomena is the natural exponential function, whose base is the special number
e. The number e is irrational, and its value is 2.718281828 to nine decimal places. It might
seem strange that we would use this number for a base rather than a simple number like 2
or 10. The advantage in using e as a base is that it simplifies many of the calculations in
calculus.

If you look at Figure 1.56a you can see that the graphs of the exponential functions
get steeper as the base a gets larger. This idea of steepness is conveyed by the

slope of the tangent line to the graph at a point. Tangent lines to graphs of functions are
defined precisely in the next chapter, but intuitively the tangent line to the graph at a
point is a line that just touches the graph at the point, like a tangent to a circle. Figure
1.57 shows the slope of the graph of as it crosses the y-axis for several values of
a. Notice that the slope is exactly equal to 1 when a equals the number e. The slope is
smaller than 1 if and larger than 1 if This is the property that makes the
number e so useful in calculus: The graph of has slope 1 when it crosses the
y-axis.

y � ex
a 7 e.a 6 e,

y = ax

y = ax

ex

a4
9
b1>2

=
41>2
91>2 =

2
3

7p # 8p = (56)p
A522 B22

= 522 # 22
= 52

= 25

A210 B3
210

= A210 B3 - 1
= A210 B2 = 10

31.1 # 30.7
= 31.1 + 0.7

= 31.8

Rules for Exponents
If and the following rules hold true for all real numbers x and y.

1. 2.

3. 4.

5.
ax

bx = aa
b
b x

ax # bx
= (ab)x(ax)y

= (ay)x
= axy

ax

ay = ax - yax # ay
= ax + y

b 7 0,a 7 0

0
x

y

m � 0.7

(a)

y � 2x

x

y

0

(c)

m � 1.1

y � 3x

x

y

0

(b)

m � 1

y � e x

1 1 1

FIGURE 1.57 Among the exponential functions, the graph of has the property that the
slope m of the tangent line to the graph is exactly 1 when it crosses the y-axis. The slope is smaller
for a base less than e, such as , and larger for a base greater than e, such as 3x.2x

y = ex
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38 Chapter 1: Functions

In Chapter 3 we use that slope property to prove e is the number the quantity
approaches as x becomes large without bound. That result provides one way to

compute the value of e, at least approximately. The graph and table in Figure 1.58 show the
behavior of this expression and how it gets closer and closer to the line 

as x gets larger and larger. (This limit idea is made precise in the next
chapter.) A more complete discussion of e is given in Chapter 7.
e L 2.718281828

y =

(1 + 1>x)x

Exponential Growth and Decay

The exponential functions , where k is a nonzero constant, are frequently used for
modeling exponential growth or decay. The function is a model for exponential
growth if and a model for exponential decay if Here y0 represents a con-
stant. An example of exponential growth occurs when computing interest compounded
continuously modeled by where P is the initial investment, r is the interest
rate as a decimal, and t is time in units consistent with r. An example of exponential decay
is the model , which represents how the radioactive element carbon-14
decays over time. Here A is the original amount of carbon-14 and t is the time in years.
Carbon-14 decay is used to date the remains of dead organisms such as shells, seeds, and
wooden artifacts. Figure 1.59 shows graphs of exponential growth and exponential decay.

y = A # e-1.2 * 10-4t

y = P # ert,

k 6 0.k 7 0
y = y0 ekx

y = ekx

–10 –8 –6 –4 –2 20 4 6 8 10

2

4

6

8

10

x

y

x (1 � 1�x)x

1000
2000
3000
4000
5000
6000
7000

2.7169
2.7176
2.7178
2.7179
2.7180
2.7181
2.7181

f (x) � (1 � 1�x)x 

y � 2.718281...

FIGURE 1.58 A graph and table of values for both suggest that as x gets 
larger and larger, gets closer and closer to e L 2.7182818 Á .ƒ(x)

ƒ(x) = (1 + 1>x)x

FIGURE 1.59 Graphs of (a) exponential growth, and (b) exponential decay,
k = -1.2 6 0.

k = 1.5 7 0,

(b)
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EXAMPLE 3 Investment companies often use the model in calculating the
growth of an investment. Use this model to track the growth of $100 invested in 2000 at an
annual interest rate of 5.5%.

Solution Let represent 2000, represent 2001, and so on. Then the exponen-
tial growth model is , where (the initial investment), (ther = 0.055P = 100y(t) = Pert

t = 1t = 0

y = Pert
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annual interest rate expressed as a decimal), and t is time in years. To predict the amount in
the account in 2004, after four years have elapsed, we take and calculate

Nearest cent using calculator

This compares with $123.88 in the account when the interest is compounded annually
from Example 1.

EXAMPLE 4 Laboratory experiments indicate that some atoms emit a part of their
mass as radiation, with the remainder of the atom re-forming to make an atom of some
new element. For example, radioactive carbon-14 decays into nitrogen; radium eventually
decays into lead. If is the number of radioactive nuclei present at time zero, the number
still present at any later time t will be

The number r is called the decay rate of the radioactive substance. (We will see how this
formula is obtained in Section 7.2.) For carbon-14, the decay rate has been determined ex-
perimentally to be about when t is measured in years. Predict the percent
of carbon-14 present after 866 years have elapsed.

Solution If we start with an amount of carbon-14 nuclei, after 866 years we are left
with the amount

Calculator evaluation

That is, after 866 years, we are left with about 90% of the original amount of carbon-14, so
about 10% of the original nuclei have decayed. In Example 7 in the next section, you will
see how to find the number of years required for half of the radioactive nuclei present in a
sample to decay (called the half-life of the substance).

You may wonder why we use the family of functions for different values of the con-
stant k instead of the general exponential functions In the next section, we show
that the exponential function is equal to for an appropriate value of k. So the formula

covers the entire range of possibilities, and we will see that it is easier to use.y = ekx
ekxax

y = ax.
y = ekx

 L (0.901)y0.

y(866) = y0 e (-1.2 * 10-4)(866)

y0

r = 1.2 * 10-4

y = y0 e-rt,  r 7 0.

y0

 = 124.61.

 = 100e0.22

y(4) = 100e0.055(4)

t = 4

1.5 Exponential Functions 39

Exercises 1.5

Sketching Exponential Curves
In Exercises 1–6, sketch the given curves together in the appropriate
coordinate plane and label each curve with its equation.

1.

2.

3. and 4. and 

5. and 6. and 

In each of Exercises 7–10, sketch the shifted exponential curves.

7. and 

8. and 

9. and 

10. and y = -1 - e-xy = -1 - ex

y = 1 - e-xy = 1 - ex

y = 3-x
+ 2y = 3x

+ 2

y = 2-x
- 1y = 2x

- 1

y = -e-xy = -exy = 1>exy = ex

y = -3ty = 3-ty = -2ty = 2-t

y = 3x, y = 8x, y = 2-x, y = (1>4)x

y = 2x, y = 4x, y = 3-x, y = (1>5)x

Applying the Laws of Exponents
Use the laws of exponents to simplify the expressions in Exercises
11–20.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20. a26
3
b2a 2

22
b4

A23 B1>2 # A212 B1>2223 # 723

A1322 B22>2A251>8 B4
35>3
32>3

44.2

43.7

91>3 # 91>6162 # 16-1.75
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Composites Involving Exponential Functions
Find the domain and range for each of the functions in Exercises
21–24.

21. 22.

23. 24.

Applications
In Exercises 25–28, use graphs to find approximate solutions.

25. 26.

27. 28.

In Exercises 29–36, use an exponential model and a graphing calcula-
tor to estimate the answer in each problem.
29. Population growth The population of Knoxville is 500,000 and

is increasing at the rate of 3.75% each year. Approximately when
will the population reach 1 million?

30. Population growth The population of Silver Run in the year
1890 was 6250. Assume the population increased at a rate of
2.75% per year.

a. Estimate the population in 1915 and 1940.

b. Approximately when did the population reach 50,000?

31. Radioactive decay The half-life of phosphorus-32 is about
14 days. There are 6.6 grams present initially.

3 - 2-x
= 03x

- 0.5 = 0

ex
= 42x

= 5

ƒ(x) =

3
1 - e2x

g(t) = 21 + 3-t

g(t) = cos(e-t)ƒ(x) =

1
2 + ex

40 Chapter 1: Functions

a. Express the amount of phosphorus-32 remaining as a function
of time t.

b. When will there be 1 gram remaining?

32. If John invests $2300 in a savings account with a 6% interest rate
compounded annually, how long will it take until John’s account
has a balance of $4150?

33. Doubling your money Determine how much time is required
for an investment to double in value if interest is earned at the rate
of 6.25% compounded annually.

34. Tripling your money Determine how much time is required for
an investment to triple in value if interest is earned at the rate of
5.75% compounded continuously.

35. Cholera bacteria Suppose that a colony of bacteria starts with
1 bacterium and doubles in number every half hour. How many
bacteria will the colony contain at the end of 24 hr?

36. Eliminating a disease Suppose that in any given year the num-
ber of cases of a disease is reduced by 20%. If there are 10,000
cases today, how many years will it take

a. to reduce the number of cases to 1000?

b. to eliminate the disease; that is, to reduce the number of cases
to less than 1?

T

T

1.6 Inverse Functions and Logarithms

A function that undoes, or inverts, the effect of a function ƒ is called the inverse of ƒ.
Many common functions, though not all, are paired with an inverse. In this section we
present the natural logarithmic function as the inverse of the exponential function

, and we also give examples of several inverse trigonometric functions.

One-to-One Functions

A function is a rule that assigns a value from its range to each element in its domain. Some
functions assign the same range value to more than one element in the domain. The func-
tion assigns the same value, 1, to both of the numbers and ; the sines of

and are both Other functions assume each value in their range no more
than once. The square roots and cubes of different numbers are always different. A func-
tion that has distinct values at distinct elements in its domain is called one-to-one. These
functions take on any one value in their range exactly once.

13>2.2p>3p>3 +1-1ƒsxd = x2

y = ex
y = ln x

DEFINITION A function ƒ(x) is one-to-one on a domain D if 
whenever in D.x1 Z x2

ƒsx1d Z ƒsx2d

EXAMPLE 1 Some functions are one-to-one on their entire natural domain. Other
functions are not one-to-one on their entire domain, but by restricting the function to a
smaller domain we can create a function that is one-to-one. The original and restricted
functions are not the same functions, because they have different domains. However, the
two functions have the same values on the smaller domain, so the original function is an
extension of the restricted function from its smaller domain to the larger domain.
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