AL-Mustaqbal University College of Engineering and Technology Department of Medical Instrumentation Techniques Engineering		Subject: Control systems Lecturer: Dr. Osama Ali Time: 2 hr. Stage: 4 th Date: 31 \ 12 \2023			
Note: Answer all questions	First exam 2023-2024	Max. Mark: 100 %			
Q1/ Multiple Choice Questions (Marks are evenly distributed) (25 Marks)					
1)- Which of the following is the input of a) Feedback signalb) Distur b) Disturc) Sensed signald) Act	of a controller in typical closed loop syste bance signal cuating Error signal e) Reference input			
2) The poles for the following system: a)1, 2 b) 2, 7 c) -2, 0	$\frac{\frac{Y(s)}{X(s)} = \frac{(s+2)}{(s+1)(s+7)}}{(s+1)(s+7)}$ are: d) -1, -7 e) 1, 7				
 3)- An output of a control block is given a) 1/3(s+1) b) 3/(s+1) 	by $3e^{-t}$. What is the transfer function of c) $1/(s+3)$ d) $(s+3)$	f the block? e) (s+1)			
4)- An open loop control system with tw $G_1(s)=0.5(s+2)/(s+1)$ and the second a) $1/[s(s+2)]$ b) $2.5/[(s+1)(s+2)]$	vo blocks in series. The first block transferblock is given by $G_2(s)=2/[s(s+2)]$.c) $1/[(s+2)(s+1)]$ d) $1/s(s-1)$	er function is given by What is the overall transfer function? +1) e) 1/s			
 5)- Effect of feedback on sensitivity is n a) Closed loop control system b) Open and closed loop control system 	ninimum in: c) Open lo s d) None of the mentioned	oop control system e) Electrical systems			
6)- Which of the following is an examplea) Household Refrigeratord) Air conditioner unit.	le of an open loop system? b) Respiratory system of an animal e) Mercury blood pressure me	c) Robotic systems easuring device			
7) Standard test signals in control systema) Impulse signalb) Ramp signal	m are: al c) Unit step signal d) Cosine sig	nal e) All of the mentioned			
 8) Unit step signal is the signal whose values of time graph of the signal and changing be c) It is zero for time less than one 1 second. 	values is : reater than or equal to zero tween 0 and 1 ond. d) All of the mentioned e) one :	for t=1 .			
 9) Ramp input a) Denotes constant velocity b) Value d) It denotes constant velocity 	te increases linearly with time c) and varies linearly with time	It varies exponentially with time e) All of the mentioned			
10) The Laplace of unit impulse functio a) e^{-s} b) $1/s$ c) $1/s^2$	n $\delta(t)$ is d) 1 e) $1/s + 1$				
11) The error signal in a closed loop sysa) Disturbance signalb) Comman	tem is the difference between the referen ad input c) Controlled signal c	ce input and the I) Feedback signal e) step signal			
12) The voltage (V _L) across an inductar a) $V_L = L. i_L$ b) $V_L = L. di_L/dt$	nce (L), with current passing through it c) $V_L = i_L (dL/dt)$ d) $V_L =$	(i_L) is equal to = $i_L \cdot (d^2 i/dt^2)$ e) $V_L = L \cdot (i_L)^2$			

AL-Mustaqbal University College of Engineering and Technology Department of Medical Instrumentation Techniques Engineering		Subject: Control systems Lecturer: Dr. Osama Ali Time: 2 hr. Stage: 4 th Date: 31 \ 12 \2023
Note: Answer all questions	First exam 2023-2024	Max. Mark: 100 %
13)The order and type of the transfer function	nction given by $G(s) = (s + 1) / (s^3)$ d type 1 c) order 3 and type 2	+ 3s ² + 12s) is of: d) order 3 type 1
 14) The inverse Laplace transform of an a) required for evaluating the output b) required for evaluating the input in the c) required for evaluating the output in sed of the evaluating the output at it is e) required for evaluating the roots of the evalua	by transfer function is put in time domain me domain s domain initial condition. me characteristic equation	
15) The current i_c passing through a ca a) $i_c = (V_c) (C)$ b) $i_c = (V_c) (dC / e) 1/C \int V_c dt$	pacitor (C) is given by dt). c) $i_c = (C) (dv_c/dt)$	d) $C \int V_c dt$
 16) Transfer function is defined as the: a) output to input in s domain with initia b) output to input in s domain with c) input to output in s domain with initia d) input to output in s domain with zero e) output to input in time domain 	al conditions. h zero initial conditions . al conditions. initial conditions.	
17) A block diagram consists of two bloc $G2(s) = -\frac{1}{s+2}$. Find the overall trans a) $G(s) = \frac{1}{2s+3}$ d) $G(s) = \frac{s+3}{(s+1)(s+2)}$ e) $G(s)$	bocks connected in parallel. The first block offer function? b) $G(s) = \frac{2s+1}{(s+1)(s+2)}$ s) = $\frac{3}{(s+1)(s+2)}$	t is $G1(s) = \frac{2}{s+1}$ and the second block is c) $G(s) = \frac{1}{(s+1)(s+2)}$
18) A block diagram consists of two block $G2(s) = \frac{s+1}{s+4}$. Find the overall transferred a) $G(s) = \frac{2}{s+4}$ d) $G(s) = \frac{(s+3)}{(s+1)(s+4)}$	bocks connected in series. The first block i fer function? b) $G(s) = \frac{2(s+1)}{(2s+5)}$ e) $G(s) = \frac{s+3}{(s+5)}$	s $G1(s) = \frac{2}{s+1}$ and the second block is c) $G(s) = \frac{2(s+1)}{(s+4)}$
(3+1)(3+4)	(\$+5)	

College of Engineering and Technology Department of Medical Instrumentation Techniques Engineering		Subject: Control systems Lecturer: Dr. Osama Ali Time: 2 hr. Stage: 4 th Date: 31 \ 12 \2023	
Note: Answer all questions	First exam 2023-2024	Max. Mark: 100 %	

Q2) Answer the following questions with True or False		(25 Marks)
 Open loop system is more efficient than closed loop systems. The Laplace equation is an equation in time domain. A water tank system with float is considered as a feedback closed loop system. If angular velocity is ω(s) and angular position is θ(s) then ω(s) = θ(s) /s A system with pole located at the left hand side of s-Plane is considered Unstable. The Pole of a first order system can not be a complex value (σ + jω) The system is stable if the output is bounded for a bounded input. The Laplace transform of (dy/dt) is Y(s)/s 	 A) True 	 B) False
 9) The Laplace of { e^{-2t} cos(t) } is S/ [(S + 1)² +4] 10) In a Process control system, the output is a variable such as speed or position 11) In Servomechanism system the output is a variable such as Temperature or pressure 12) For Y(s)/X(s) = G(s); If the input is unit step function then Y(s) = s G(s) 13) For Y(s)/X(s) = G(s); If the input is Impulse function then Y(s) = G(s). 14) The ratio of the output Y(s) to the actuating error signal E(s) is called the <i>feedforware</i> 	 A) True A) True A) True A) True A) True A) True <i>A</i>) True <i>A</i>) True <i>A</i>) True 	B) False B) False B) False B) False B) False <i>inction</i> B) False
15) The ratio of the feedback signal $B(s)$ to the actuating error signal $E(s)$ is called the o	pen-loop tra <u>A) True</u>	<i>nsfer function.</i> B) False
 16) If the feedback transfer function H(s) is unity, then the open-loop transfer function function are the same. 17) The output of closed-loop system depends on both the closed-loop transfer function input signal 18) Reference input is almost the desired output 	and the feed <u>A) True</u> and the natu <u>A) True</u> A) True	forward transfer B) False ure of the B) False B) False
19) A control system in which the output signal has no effect upon the control action is a c 20) The required power in open loop system is lower than in a closed loop system. 21) If the parameters of a system is changing with time it called nonlinear system. 22) The balance equation for a mechanical system is: $\sum Forces = Mass x$ velocity 23) The Laplace of any function is evaluated by $L[f(t)] = F(s) = \int_0^\infty f(t)e^{-st}dt$ 24) The symbol (s) in Laplace equations refers to a complex variable.	losed loop sy A) True A) True A) True A) True A) True A) True A) True A) True	stem <u>B) False</u> B) False <u>B) False</u> B) False B) False B) False

"good luck"

رئيس القسم

ا_.د. بيان مهدي صبار

استاذ المادة

أ.م.د.اسامه علي عواد