4-4- Maxima and Minima :

Increasing and decreasing function : Let f be defined on an interval and x_{1}, x_{2} denoted a number on that interval :

- If $f\left(x_{1}\right)<f\left(x_{2}\right)$ when ever $x_{1}<x_{2}$ then f is increasing on that interval.
- If $f\left(x_{1}\right)>f\left(x_{2}\right)$ when ever $x_{1}<x_{2}$ then f is decreasing on that interval.
- If $f\left(x_{1}\right)=f\left(x_{2}\right)$ for all values of x_{1}, x_{2} then f is constant on that interval.
The first derivative test for rise and fall : Suppose that a function f has a derivative at every point \boldsymbol{x} of an interval I.
Then :
- f increases on I if $f^{\prime}(x)>o, \quad \forall x \in I$
- f decreases on I if $f^{\prime}(x)>0, \quad \forall x \in I$

If \boldsymbol{f}^{\prime} changes from positive to negative values as \boldsymbol{x} passes from left to right through a point c, then the value of f at c is a local maximum value of f, as shown in below figure. That is $f(c)$ is the largest value the function takes in the immediate neighborhood at $x=c$.

Similarly, if \boldsymbol{f}^{\prime} changes from negative to positive values as \boldsymbol{x} passes left to right through a point d, then the value of f at d is a local minimum value of f. That is $f(d)$ is the smallest value of \boldsymbol{f} takes in the immediate neighborhood of \boldsymbol{d}.
$\underline{E X-5}-$ Graph the function : $y=f(x)=\frac{x^{3}}{3}-2 x^{2}+3 x+2$.
Sol.- $f^{\prime}(x)=x^{2}-4 x+3 \Rightarrow(x-1)(x-3)=0 \Rightarrow x=1,3$

The function has a local maximum at $x=1$ and a local minimum at $x=3$.
To get a more accurate curve, we take :

x	0	1	2	3	4
$f(x)$	2	3.3	2.7	2	3.3

Then the graph of the function is :

Concave down and concave up : The graph of a differentiable function $y=f(x)$ is concave down on an interval where f^{\prime} decreases, and concave up on an interval where f^{\prime} increases.
The second derivative test for concavity : The graph of $y=f(x)$ is concave down on any interval where $y^{\prime \prime}<0$, concave up on any interval where $y^{\prime \prime}>0$.
Point of inflection : A point on the curve where the concavity changes is called a point of inflection. Thus , a point of inflection on a twice - differentiable curve is a point where $y^{\prime \prime}$ is positive on one side and negative on other, i.e. $y^{\prime \prime}=0$.
$\underline{E X-6}-$ Sketch the curve : $y=\frac{1}{6}\left(x^{3}-6 x^{2}+9 x+6\right)$.
Sol. -

$$
\begin{aligned}
& y^{\prime}=\frac{1}{2} x^{2}-2 x+\frac{3}{2}=0 \Rightarrow x^{2}-4 x+3=0 \Rightarrow(x-1)(x-3)=0 \Rightarrow x=1,3 \\
& y^{\prime \prime}=x-2 \Rightarrow \text { at } x=1 \Rightarrow y^{\prime \prime}=1-2=-1<0 \text { concave down } . \\
& \Rightarrow \text { at } x=3 \Rightarrow y^{\prime \prime}=3-2>0 \quad \text { concave up } . \\
& \Rightarrow \text { at } y^{\prime \prime}=0 \Rightarrow x-2=0 \Rightarrow x=2 \text { point of inflection } .
\end{aligned}
$$

x	0	1	2	3	4
y	1	1.7	1.3	1	1.7

$\underline{E X-7}$ - What value of a makes the function :

$$
f(x)=x^{2}+\frac{a}{x}, \text { have : }
$$

i) a local minimum at $x=2$?
ii) a local minimum at $x=-3$?
iii) a point of inflection at $x=1$?
iv) show that the function can't have a local maximum for any value of a.
Sol. -

$$
f(x)=x^{2}+\frac{a}{x} \Rightarrow \frac{d f}{d x}=2 x-\frac{a}{x^{2}}=0 \Rightarrow a=2 x^{3} \text { and } \frac{d^{2} y}{d x^{2}}=2+\frac{2 a}{x^{3}}
$$

$$
\begin{aligned}
& \text { i) at } x=2 \Rightarrow a=2 * 8=16 \text { and } \frac{d^{2} f}{d x^{2}}=2+\frac{2 * 16}{2^{3}}=6>0 \text { Mini. } \\
& \text { ii) at } x=-3 \Rightarrow a=2(-3)^{3}=-54 \text { and } \frac{d^{2} f}{d x^{2}}=2+\frac{2(-54)}{(-3)^{3}}=6>0 \text { Mini. } \\
& \text { iii) at } x=1 \Rightarrow \frac{d^{2} f}{d x^{2}}=2+\frac{2 a}{1}=0 \Rightarrow a=-1 \\
& \text { iv) } \quad a=2 x^{3} \Rightarrow \frac{d^{2} f}{d x^{2}}=2+\frac{2\left(2 x^{3}\right)}{x^{3}}=6>0 \\
& \text { Since } \frac{d^{2} f}{d x^{2}}>0 \text { for all value of } x \text { in } a=2 x^{3} .
\end{aligned}
$$

Hence the function don't have a local maximum .

$\underline{E X-8}$ - What are the best dimensions (use the least material) for a tin can which is to be in the form of a right circular cylinder and is to hold 1 gallon (231 cubic inches)?
Sol. - The volume of the can is :

$$
v=\pi r^{2} h=231 \Rightarrow h=\frac{231}{\pi r^{2}}
$$

where r is radius, h is height .
The total area of the outer surface (top, bottom, and side) is :

$$
\begin{aligned}
& A=2 \pi r^{2}+2 \pi r h=2 \pi r^{2}+2 \pi r \frac{231}{\pi r^{2}} \Rightarrow A=2 \pi r^{2}+\frac{462}{r} \\
& \frac{d A}{d r}=4 \pi r-\frac{462}{r^{2}}=0 \Rightarrow r=3.3252 \text { inches } \\
& \frac{d^{2} A}{d r^{2}}=4 \pi+\frac{924}{r^{3}}=4 \pi+\frac{924}{(3.3252)^{3}}=37.714>0 \Rightarrow \text { min. } \\
& h=\frac{231}{\pi r^{2}}=\frac{231}{\frac{22}{7}(3.3252)^{2}}=6.6474 \text { inches }
\end{aligned}
$$

The dimensions of the can of volume 1 gallon have minimum surface area are :
$r=3.3252 \mathrm{in}$. and $h=6.6474 \mathrm{in}$.
$\underline{E X-9}$ - A wire of length L is cut into two pieces, one being bent to form a square and the other to form an equilateral triangle. How should the wire be cut :
a) if the sum of the two areas is minimum.
b) if the sum of the two areas is maximum.

Sol. : Let x is a length of square.
$2 y$ is the edge of triangle .

The perimeter is $p=4 x+6 y=L \Rightarrow x=\frac{1}{4}(L-6 y)$.

$$
(2 y)^{2}=y^{2}+h^{2} \Rightarrow h=\sqrt{3} y \text { from triangle } .
$$

The total area is $A=x^{2}+y h=\frac{1}{16}(L-6 y)^{2}+y \sqrt{3} y$

$$
\begin{gathered}
\Rightarrow A=\frac{1}{16}(L-6 y)^{2}+\sqrt{3} y^{2} \\
\frac{d A}{d y}=\frac{-3}{4}(L-6 y)+2 \sqrt{3} y=0 \Rightarrow y=\frac{3 L}{18+8 \sqrt{3}} \\
\frac{d^{2} A}{d y^{2}}=\frac{9}{2}+2 \sqrt{3}>0 \Rightarrow \min
\end{gathered}
$$

a) To minimized total areas cut for triangle $6 y=\frac{9 L}{9+4 \sqrt{3}}$

And for square $L-\frac{9 L}{9+4 \sqrt{3}}=\frac{4 \sqrt{3} L}{9+4 \sqrt{3}}$.
b) To maximized the value of A on endpoints of the interval

$$
\begin{aligned}
& 0 \leq 4 x \leq L \Rightarrow 0 \leq x \leq \frac{L}{4} \\
& \text { at } x=0 \Rightarrow y=\frac{L}{6} \text { and } h=\frac{L}{2 \sqrt{3}} \Rightarrow A_{1}=\frac{L^{2}}{12 \sqrt{3}} \\
& \text { at } x=\frac{L}{4} \Rightarrow y=0 \Rightarrow A_{2}=\frac{L^{2}}{16}
\end{aligned}
$$

Since $A_{2}=\frac{L^{2}}{16}>A_{1}=\frac{L^{2}}{12 \sqrt{3}}$
Hence the wire should not be cut at all but should be bent into a square .

Problems - 4

1. Find the velocity v if a particle's position at time t is $s=180 t-16 t^{2}$ When does the velocity vanish ?
(ans.: 5.625)
2. If a ball is thrown straight up with a velocity of 32 ft ./sec., its high after t sec. is given by the equation $s=32 t-16 t^{2}$. At what instant will the ball be at its highest point? and how high will it rise?
(ans.: 1, 16)
3. A stone is thrown vertically upwards at $35 \mathrm{~m} . / \mathrm{sec}$. . Its height is : $s=35 t-4.9 t^{2}$ in meter above the point of projection where t is time in second later :
a) What is the distance moved, and the average velocity during the $3^{r d}$ sec. (from $t=2$ to $\left.t=3\right)$?
b) Find the average velocity for the intervals $t=2$ to $t=2.5, t=2$ to $t=2.1 ; t=2$ to $t=2+h$.
c) Deduce the actual velocity at the end of the $2^{\text {nd }}$ sec. .
(ans.: a) $10.5,10.5$; b) $12.95,14.91,15.4-4.9 h$, c) 15.4)
4. A stone is thrown vertically upwards at $24.5 \mathrm{~m} . / \mathrm{sec}$. from a point on the level with but just beyond a cliff ledge. Its height above the ledge t sec. later is $4.9 t(5-t) \quad \mathrm{m}$. . If its velocity is $v \mathrm{~m} . / \mathrm{sec}$., differentiate to find v in terms of t :
i) when is the stone at the ledge level ?
ii) find its height and velocity after $1,2,3$, and 6 sec. .
iii) what meaning is attached to negative value of s ? a negative value of v ?
iv) when is the stone momentarily at rest? what is the greatest height reached ?
$v)$ find the total distance moved during the $3^{\text {rd }}$ sec. .
(ans.:v=24.5-9.8t; i)0,5; ii)19.6,29.4,29.4,-29.4;14.7,4.9, -4.9,-34.3;
iv) 2.5;30.625; v)2.45)
5. A stone is thrown vertically downwards with a velocity of 10 $\mathrm{m} . / \mathrm{sec}$., and gravity produces on it an acceleration of $9.8 \mathrm{~m} . / \mathrm{sec}^{2}$:
a) what is the velocity after $1,2,3, t$ sec.?
b) sketch the velocity -time graph . (ans.: 19.8, 29.6, 39.4,10+9.8t)
6. A car accelerates from $5 \mathrm{~km} . / \mathrm{h}$. to $41 \mathrm{~km} . / \mathrm{h}$. in 10 sec . Express this acceleration in $: \mathbf{i}) \mathrm{km} . / \mathrm{h}$. per sec. ii) $\mathrm{m} . / \mathrm{sec}^{2}$, iii) km./h. ${ }^{2}$.

> (ans.: i)3.6; ii)1; iii) 12960)
7. A car can accelerate at $4 \mathrm{~m} . / \mathrm{sec}^{2}$. How long will it take to reach 90 km./h. from rest ?
8. An express train reducing its velocity to $40 \mathrm{~km} . / \mathrm{h}$., has to apply the brakes for 50 sec . If the retardation produced is $0.5 \mathrm{~m} . / \mathrm{sec}^{2}$, find its initial velocity in $\mathbf{k m}$./h. .
(ans.: 130)
9. At the instant from which time is measured a particle is passing through O and traveling towards A, along the straight line $O A$. It is $\mathrm{s} \mathbf{m}$. from O after t sec. where $s=t(t-2)^{2}$:
i) when is it again at O ?
ii) when and where is it momentarily at rest ?
iii) what is the particle's greatest displacement from O, and how far does it moves, during the first 2 sec. ?
iv) what is the average velocity during the $3^{\text {rd }}$ sec.?
$v)$ at the end of the $1^{\text {st }}$ sec. where is the particle, which way is it going, and is its speed increasing or decreasing?
vi) repeat (v) for the instant when $t=-1$.
(ans.:i)2;ii)0,32/27;iii)64/27;iv)3;v)OA;inceasing; vi)AO;decreasing)
10. A particle moves in a straight line so that after t sec. it is $s \mathrm{~m}$., from a fixed point O on the line, where $s=t^{4}+3 t^{2}$. Find :
i) The acceleration when $t=1, t=2$, and $t=3$.
ii) The average acceleration between $t=1$ and $t=3$.
(ans.: i)18, 54,114; ii)58)
11. A particle moves along the x-axis in such away that its distance x cm . from the origin after t sec. is given by the formula $x=27 t-2 t^{2}$ what are its velocity and acceleration after 6.75 sec . ? How long does it take for the velocity to be reduced from $15 \mathrm{~cm} . / \mathrm{sec}$. to 9 $\mathrm{cm} . / \mathrm{sec}$., and how far does the particle travel mean while ? (ans.: 0,-4,1.5;18)
12. A point moves along a straight line $O X$ so that its distance $x \mathrm{~cm}$. from the point O at time t sec. is given by the formula $x=t^{3}-6 t^{2}+9 t$. Find :
i) at what times and in what positions the point will have zero velocity .
ii) its acceleration at these instants .
iii) its velocity when its acceleration is zero .

> (ans.: i)1,3;4,0; ii)-6,6; iii)-3)
13. A particle moves in a straight line so that its distance $x \mathrm{~cm}$. from a fixed point O on the line is given by $x=9 t^{2}-2 t^{3}$ where t is the time in seconds measured from O. Find the speed of the particle when $t=3$. Also find the distance from O of the particle when $t=4$, and show that it is then moving towards O.
(ans.: 0, 16)
14. Find the limits for the following functions by using L'Hopital's rule :

1) $\lim _{x \rightarrow \infty} \frac{5 x^{2}-3 x}{7 x^{2}+1}$
2) $\lim _{t \rightarrow 0} \frac{\sin t^{2}}{t}$
3) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{2 x-\pi}{\cos x}$
4) $\lim _{t \rightarrow 0} \frac{\cos t-1}{t^{2}}$
5) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{1+\cos 2 x}$
6) $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin x-\cos x}{x-\frac{\pi}{4}}$
7) $\lim _{x \rightarrow 1} \frac{2 x^{2}-(3 x+1) \sqrt{x}+2}{x-1}$
8) $\lim _{x \rightarrow 0} \frac{x(\cos x-1)}{\sin x-x}$
9) $\lim _{x \rightarrow 0} x . \csc ^{2} \sqrt{2 x}$
10) $\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x \cdot \sin x}$
(ans. : 1) $\left.\frac{5}{7} ; 2\right)\left(0 ; 3\right.$) $-2 ; 4$) $\left.\left.-\frac{1}{2} ; 5\right) \frac{1}{4} ; 6\right) \sqrt{2} ; 7$) - $\left.\left.1 ; 8\right) 3 ; 9\right) \frac{1}{2} ; 10$)1)
15. Find any local maximum and local minimum values, then sketch each curve by using first derivative :
1) $f(x)=x^{3}-4 x^{2}+4 x+5$
(ans.: max. (0.7,6.2);min. (2,5))
2) $f(x)=\frac{x^{2}-1}{x^{2}+1}$
(ans.: min. (0,-1))
3) $f(x)=x^{5}-5 x-6$
(ans. : max. (-1,-2); min. (1,-10))
4) $f(x)=x^{\frac{4}{3}}-x^{\frac{1}{3}}$
(ans. : min. ($0.25,-0.47$))
16. Find the interval of x-values on which the curve is concave up and concave down, then sketch the curve :
1) $f(x)=\frac{x^{3}}{3}+x^{2}-3 x$
(ans. : up $(-1, \infty) ; \operatorname{down}(-\infty,-1))$
2) $f(x)=x^{2}-5 x+6$
(ans. : up $(-\infty, \infty)$)
3) $f(x)=x^{3}-2 x^{2}+1$
(ans.: up $\left(\frac{2}{3}, \infty\right) ; \operatorname{down}\left(-\infty, \frac{2}{3}\right)$)
4) $f(x)=x^{4}-2 x^{2}$
(ans. : up $\left.\left(-\infty,-\frac{1}{\sqrt{3}}\right),\left(\frac{1}{\sqrt{3}}, \infty\right) ; \operatorname{down}\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)\right)$
17. Sketch the following curve by using second derivative :
1) $y=\frac{x}{1+x^{2}}$
(ans. : max.(1,0.5); min.(-1,-0.5))
2) $y=-x(x-7)^{2}$
(ans. : max.(7,0); min.(2.3,-50.8))
3) $y=(x+2)^{2}(x-3)$
(ans. : max.(-2,0); min.(1.3,-18.5))
4) $y=x^{2}(5-x)$
(ans. : max.(3.3,18.5); min.(0,0))
18. What is the smallest perimeter possible for a rectangle of area 16 in. ${ }^{2}$?
(ans.: 16)
19. Find the area of the largest rectangle with lower base on the x axis and upper vertices on the parabola $y=12-x^{2}$. (ans.:32)
20) A rectangular plot is to be bounded on one side by a straight river and enclosed on the other three sides by a fence. With 800 \mathbf{m}. of fence at your disposal. What is the largest area you can enclose?
(ans.:80000)
21) Show that the rectangle that has maximum area for a given perimeter is a square .
22) A wire of length L is available for making a circle and a square . How should the wire be divided between the two shapes to maximize the sum of the enclosed areas?
(ans.: all bent into a circle)
23) A closed container is made from a right circular cylinder of radius r and height h with a hemispherical dome on top. Find the relationship between r and \boldsymbol{h} that maximizes the volume for a given surface area s.

$$
\left(\text { ans. }: r=h=\sqrt{\frac{s}{5 \pi}}\right)
$$

24) An open rectangular box is to be made from a piece of cardboard 8 in . wide and 15 in . long by cutting a square from each corner and bending up the sides Find the dimensions of the box of largest volume.
(ans.: height=5/3; width=14/3; length=35/3)
