## Chapter - one <br> The Rate of Change of a Function

## 1-1- Coordinates for the plane :

Cartesian Coordinate- Two number lines, one of them horizontal (called $x$-axis ) and the other vertical ( called $y$-axis ). The point where the lines cross is the origin. Each line is assumed to represent the real number .

On the $\boldsymbol{x}$-axis, the positive number $a$ lies $a$ units to the right of the origin, and the negative number $-a$ lies $a$ units to the left of the origin. On the $y$-axis, the positive number $b$ lies $b$ units above the origin while the negative where $-b$ lies $b$ units below the origin .

With the axes in place, we assign a pair $(a, b)$ of real number to each point $P$ in the plane. The number $a$ is the number at the foot of the perpendicular from $P$ to the $x$-axis (called $x$-coordinate of $P$ ). The number $b$ is the number at the foot of the perpendicular from $P$ to the $y$-axis (called $y$-coordinate of $P$ ).


## 1-2- The Slope of a line :

Increments - When a particle moves from one position in the plane to another, the net changes in the particle's coordinates are calculated by subtracting the coordinates of the starting point ( $x_{1}, y_{1}$ ) from the coordinates of the stopping point ( $x_{2}, y_{2}$ ),
i.e. $\Delta x=x_{2}-x_{1}, \Delta y=y_{2}-y_{1}$.

Slopes of nonvertical lines:
Let $L$ be a nonvertical line in the plane,
Let $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ be two points on $L$.
Then the slope $m$ is :
$m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ where $\quad \Delta x \neq 0$

- A line that goes uphill as x increases has a positive slope. A line that goes downhill as $x$ increases has a negative slope .
- A horizontal line has slope zero because $\Delta y=0$.
- The slope of a vertical line is undefined because $\Delta x=0$.
- Parallel lines have same slope .
- If neither of two perpendicular lines $L_{1}$ and $L_{2}$ is vertical , their slopes $m_{1}$ and $m_{2}$ are related by the equation : $m_{1} . m_{2}=-1$.
Angles of Inclination: The angle of inclination of a line that crosses the $x$ axis is the smallest angle we get when we measure counter clock from the $x$-axis around the point of intersection.
The slope of a line is the tangent of the line angle of inclination .

$$
m=\tan \Phi \quad \text { where } \Phi \text { is the angle of inclination . }
$$

- The angle of inclination of a horizontal line is taken to be $0^{\circ}$.
- Parallel lines have equal angle of inclination .

$\underline{E X-1}$ - Find the slope of the line determined by two points $A(2,1)$ and $B(-1,3)$ and find the common slope of the line perpendicular to $A B$.
Sol.- Slope of $A B$ is: $\quad m_{A B}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-1}{-1-2}=-\frac{2}{3}$
Slope of line perpendicular to $A B$ is : $-\frac{1}{m_{A B}}=\frac{3}{2}$
$\underline{E X-2}$ - Use slopes to determine in each case whether the points are collinear (lie on a common straight line ) :
a) $A(1,0), B(0,1), C(2,1)$.
b) $A(-3,-2), B(-2,0), C(-1,2), D(1,6)$.

Sol. -
a) $m_{A B}=\frac{1-0}{0-1}=-1$ and $m_{B C}=\frac{1-1}{2-0}=0 \neq m_{A B}$

The points $A, B$ and $C$ are not lie on a common straight line .
b) $m_{A B}=\frac{0-(-2)}{-2-(-3)}=2 \quad, \quad m_{B C}=\frac{2-0}{-1-(-2)}=2 \quad, \quad m_{C D}=\frac{6-2}{1-(-1)}=2$

Since $m_{A B}=m_{B C}=m_{C D}$
Hence the points $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$, and $\boldsymbol{D}$ are collinear .
1-3- Equations for lines : An equation for a line is an equation that is satisfied by the coordinates of the points that lies on the line and is not satisfied by the coordinates of the points that lie elsewhere.
Vertical lines : Every vertical line $L$ has to cross the $\mathbf{x}$-axis at some point $(a, 0)$. The other points on $L$ lie directly above or below $(a, 0)$. This mean that : $\quad x=a \quad \forall(x, y)$
Nonvertical lines: That point - slope equation of the line through the point $\left(x_{1}, y_{1}\right)$ with slope $m$ is :

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Horizontal lines : The standard equation for the horizontal line through the point $(a, b)$ is : $\quad y=b$.
The distance from a point to a line: To calculate the distance $d$ between the point $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is :

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

We use this formula when the coordinate axes are scaled in a common unit.
To find the distance from the point $P\left(x_{1}, y_{1}\right)$ to the line $L$, we follow :

1. Find an equation for the line $L^{\prime}$ through $P$ perpendicular to $L$ :

$$
y-y_{1}=m^{\prime}\left(x-x_{1}\right) \quad \text { where } m^{\prime}=-1 / m
$$

2. Find the point $Q\left(x_{2}, y_{2}\right)$ by solving the equation for $L$ and $L^{\prime}$ simultaneously .
3. Calculate the distance between $P$ and $Q$.

The general linear equation :

$$
A x+B y=C \quad \text { where } A \text { and } B \text { not both zero. }
$$

EX-3 - Write an equation for the line that passes through point :
a) $P(-1,3)$ with slope $m=-2$.
b) $P_{1}(-2,0)$ and $P_{2}(2,-2)$.

Sol. -
a) $y-y_{1}=m\left(x-x_{1}\right) \rightarrow y-3=-2(x-(-1)) \rightarrow y+2 x=1$
b)

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-0}{2-(-2)}=-\frac{1}{2} \\
& y-y_{1}=m\left(x-x_{1}\right) \Rightarrow \quad y-0=-\frac{1}{2}(x-(-2)) \Rightarrow 2 y+x+2=0
\end{aligned}
$$

$\underline{E X-4}$ - Find the slope of the line : $3 x+4 y=12$.
Sol. $-y=-\frac{3}{4} x+3 \Rightarrow$ the slope is $m=-\frac{3}{4}$

## EX-5- Find :

a) an equation for the line through $P(2,1)$ parallel to $L: y=x+2$.
b) an equation for the line through $P$ perpendicular to $L$.
c) the distance from $P$ to $L$.

## Sol.-

a)
since $\quad L_{2} / / L_{I} \Rightarrow \quad m_{L 2}=m_{L I}=1 \Rightarrow y-1=1(x-2) \Rightarrow y=x-1$
b) Since $L_{I}$ and $L_{3}$ are perpendicular lines then :

$$
m_{L 3}=-1 \Rightarrow y-1=-(x-2) \Rightarrow y+x=3
$$

c)

$$
\begin{gathered}
\begin{array}{l}
y=x+2 \\
y+x=3
\end{array} \Rightarrow x=\frac{1}{2} \text { and } y=\frac{5}{2} \Rightarrow P(2,1) \text { and } Q\left(\frac{1}{2}, \frac{5}{2}\right) \\
\Rightarrow d=\sqrt{\left(x_{Q}-x_{P}\right)^{2}+\left(y_{Q}-y_{P}\right)^{2}}=\sqrt{4.5}
\end{gathered}
$$

$\underline{E X-6}$ - Find the angle of inclination of the line : $\sqrt{3} x+y=-3$
Sol.-

$$
\begin{array}{ccc}
y=-\sqrt{3} x-3 & \Rightarrow & m=-\sqrt{3} \\
m=\tan \Phi=-\sqrt{3} & \Rightarrow & \Phi=120^{\circ}
\end{array}
$$

$\underline{E X-7}$ - Find the line through the point $P(1,4)$ with the angle of inclination $\Phi=60^{\circ}$.
Sol.-

$$
\begin{aligned}
& m=\tan \Phi=\tan 60=\sqrt{3} \\
& y-4=\sqrt{3}(x-1) \Rightarrow \quad y=\sqrt{3} x+4-\sqrt{3}
\end{aligned}
$$

$\underline{E X-8}$ - The pressure $P$ experienced by a diver under water is related to the diver's depth $d$ by an equation of the form $P=k d+1$ where $k$ a constant. When $d=0$ meters, the pressure is 1 atmosphere. The pressure at 100 meters is about 10.94 atmosphere . Find the pressure at 50 meters.

Sol.- At $P=10.94$ and $d=100 \rightarrow \quad 10.94=k(100)+1 \rightarrow k=0.0994$ $P=0.0994 d+1$, at $d=50 \rightarrow P=0.0994 * 50+1=5.97$ atmo.

