

P a g e | 1 Study Year: 2023-2024

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

 العلومكلية
 الانظمة الطبية الذكية نــــــــــســق

Lecture: (5)

Basic Computation Part II

 Subject: Computer Programming (I)

Level: First
Lecturer: Dr. Maytham N. Meqdad

P a g e | 2 Study Year: 2023-2024

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

 Java Identifiers
All Java variables must be identified with unique names.

These unique names are called identifiers.

Identifiers can be short names (like x and y) or more descriptive names (age, sum,

totalVolume(.

Note: It is recommended to use descriptive names in order to create understandable

and maintainable code:
// Good

int minutesPerHour = 60;

// OK, but not so easy to understand what m actually is

int m = 60;

The general rules for naming variables are:

 Names can contain letters, digits, underscores, and dollar signs

 Names must begin with a letter

 Names should start with a lowercase letter and it cannot contain whitespace

 Names can also begin with $ and _ (but we will not use it in this tutorial)

 Names are case sensitive ("myVar" and "myvar" are different variables)

 Reserved words (like Java keywords, such as int or boolean) cannot be used as names

 Java Variables

Variables are containers for storing data values.

In Java, there are different types of variables, for example:

 String - stores text, such as "Hello". String values are surrounded by double quotes

 int - stores integers (whole numbers), without decimals, such as 123 or -123

 float - stores floating point numbers, with decimals, such as 19.99 or -19.99

 char - stores single characters, such as 'a' or 'B'. Char values are surrounded by single

quotes

 boolean - stores values with two states: true or false

P a g e | 3 Study Year: 2023-2024

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Declaring (Creating) Variables

To create a variable, you must specify the type and assign it a value:

type variableName = value;

Where type is one of Java's types (such as int or String), and variableName is the name of the

variable (such as x or name). The equal sign is used to assign values to the variable.

To create a variable that should store text, at the following example:

Example

Create a variable called name of type String and assign it the value "John":

String name = "John";

System.out.println(name);

To create a variable that should store a number, at the following example:

Example

Create a variable called myNum of type int and assign it the value 15:

int myNum = 15;

System.out.println(myNum);

You can also declare a variable without assigning the value, and assign the value later:

int myNum;

myNum = 15;

System.out.println(myNum);

P a g e | 4 Study Year: 2023-2024

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Note that if you assign a new value to an existing variable, it will overwrite the previous value:

Example

Change the value of myNum from 15 to 20:

int myNum = 15;

myNum = 20; // myNum is now 20

System.out.println(myNum);

Final Variables

If you don't want others (or yourself) to overwrite existing values, use the final keyword (this

will declare the variable as "final" or "constant", which means unchangeable and read-only):

Example

final int myNum = 15;

myNum = 20; // will generate an error: cannot assign a value to a final

variable

Other Types

A demonstration of how to declare variables of other types:

Example

int myNum = 5;

float myFloatNum = 5.99f;

char myLetter = 'D';

boolean myBool = true;

String myText = "Hello";

P a g e | 5 Study Year: 2023-2024

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

 Java Naming Conventions

A naming convention is a rule to follow as you decide what to name your identifiers (e.g. class,

package, variable, method, etc.).

Why Use Naming Conventions?

Different Java programmers can have different styles and approaches to the way they program.

By using standard Java naming conventions they make their code easier to read for themselves

and for other programmers. Readability of Java code is important because it means less time is

spent trying to figure out what the code does, leaving more time to fix or modify it.

To illustrate the point it's worth mentioning that most software companies will have a document

that outlines the naming conventions they want their programmers to follow. A new programmer

who becomes familiar with those rules will be able to understand code written by a programmer

who might have left the company many years beforehand.

Picking a Name for Your Identifier

When choosing a name for an identifier, make sure it's meaningful. For instance, if your program

deals with customer accounts then choose names that make sense for dealing with customers and

their accounts (e.g., customerName, accountDetails). Don't worry about the length of the name.

A longer name that sums up the identifier perfectly is preferable to a shorter name that might be

quick to type but ambiguous.

A Few Words About Cases

Using the right letter case is the key to following a naming convention:

 Lowercase is where all the letters in a word are written without any capitalization (e.g.,

while, if, mypackage).

 Uppercase is where all the letters in a word are written in capitals. When there are more

than two words in the name use underscores to separate them (e.g., MAX_HOURS,

FIRST_DAY_OF_WEEK).

 CamelCase (also known as Upper CamelCase) is where each new word begins with a

capital letter (e.g., CamelCase, CustomerAccount, PlayingCard).

 Mixed case (also known as Lower CamelCase) is the same as CamelCase except the first

letter of the name is in lowercase (e.g., hasChildren, customerFirstName,

customerLastName).

https://www.thoughtco.com/identifier-2034136
https://www.thoughtco.com/what-is-java-2034117
https://www.thoughtco.com/java-is-case-sensitive-2034197

P a g e | 6 Study Year: 2023-2024

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Standard Java Naming Conventions

The below list outlines the standard Java naming conventions for each identifier type:

 Packages: Names should be in lowercase. With small projects that only have a few

packages it's okay to just give them simple (but meaningful!) names:

 package pokeranalyzer package mycalculator

In software companies and large projects where the packages might be imported into

other classes, the names will normally be subdivided. Typically this will start with the

company domain before being split into layers or features:

 package com.mycompany.utilities package

org.bobscompany.application.userinterface

 Classes: Names should be in CamelCase. Try to use nouns because a class is normally

representing something in the real world:

 class Customer class Account

 Interfaces: Names should be in CamelCase. They tend to have a name that describes an

operation that a class can do:

 interface Comparable interface Enumerable

Note that some programmers like to distinguish interfaces by beginning the name with an

"I":

 interface IComparable interface IEnumerable

 Methods: Names should be in mixed case. Use verbs to describe what the method does:

 void calculateTax() string getSurname()

 Variables: Names should be in mixed case. The names should represent what the value

of the variable represents:

 string firstName int orderNumber

Only use very short names when the variables are short-lived, such as in for loops:

 for (int i=0; i<20;i++) { //i only lives in here }

P a g e | 7 Study Year: 2023-2024

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

 Constants: Names should be in uppercase.

 static final int DEFAULT_WIDTH static final int MAX_HEIGHT

 Constant Variables

A constant is a variable whose value cannot change once it has been assigned. Java doesn't have

built-in support for constants, but the variable modifiers static and final can be used to

effectively create one.

Constants can make your program more easily read and understood by others. In addition, a

constant is cached by the JVM as well as your application, so using a constant can improve

performance.

Static Modifier

This allows a variable to be used without first creating an instance of the class; a static class

member is associated with the class itself, rather than an object. All class instances share the

same copy of the variable.

This means that another application or main() can easily use it.

For example, class myClass contains a static variable days_in_week:

public class myClass {

 static int days_in_week = 7;

}

Because this variable is static, it can be used elsewhere without explicitly creating a myClass

object:

public class myOtherClass {

 static void main(String[] args) {

 System.out.println(myClass.days_in_week);

 }

 }

https://www.thoughtco.com/variable-2034325
https://www.thoughtco.com/what-is-java-2034117
https://www.thoughtco.com/main-class-2034233
https://www.thoughtco.com/static-fields-2034338

