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 45.   46. 

x

y

1−1

x = sin t
y = sin 2t

 

x

y

1−1

1

−1

x = sin 2t

y = sin 3t

 47. Cycloid

a. Find the length of one arch of the cycloid

x = a(t - sin t), y = a(1 - cos t).

b. Find the area of the surface generated by revolving one arch 
of the cycloid in part (a) about the x-axis for a = 1.

 48. Volume Find the volume swept out by revolving the region 
bounded by the x-axis and one arch of the cycloid

x = t - sin t, y = 1 - cos t

  about the x-axis.

 49. Find the volume swept out by revolving the region bounded by the 
x-axis and the graph of

x = 2t, y = t (2 - t)

  about the x-axis.

 50. Find the volume swept out by revolving the region bounded by the 
y-axis and the graph of

x = t (1 - t), y = 1 + t2

  about the y-axis.

COMPUTER EXPLORATIONS

In Exercises 51–54, use a CAS to perform the following steps for the 
given curve over the closed interval.

a. Plot the curve together with the polygonal path approxima-
tions for n = 2, 4, 8 partition points over the interval. (See 
Figure 11.16.)

b. Find the corresponding approximation to the length of the 
curve by summing the lengths of the line segments.

c. Evaluate the length of the curve using an integral. Compare 
your approximations for n = 2, 4, 8 with the actual length 
given by the integral. How does the actual length compare 
with the approximations as n increases? Explain your answer.

 51. x = 1
3

 t3, y = 1
2

 t2, 0 … t … 1

 52. x = 2t3 - 16t2 + 25t + 5, y = t2 + t - 3, 0 … t … 6

 53. x = t - cos t, y = 1 + sin t, -p … t … p

 54. x = et cos t, y = et sin t, 0 … t … p

 for the length of the curve x = g(y), c … y … d (Section 6.3, 
Equation 4), is a special case of the parametric length formula

L = L
b

a

 B adx
dt
b2

+ ady

dt
b2

 dt.

Use this result to find the length of each curve.

b. x = y3>2, 0 … y … 4>3
c. x =

3
2

 y2>3, 0 … y … 1

 43. The curve with parametric equations

x = (1 + 2 sin u) cos u, y = (1 + 2 sin u) sin u

  is called a limaçon and is shown in the accompanying figure. Find 
the points (x, y) and the slopes of the tangent lines at these points 
for

a. u = 0.  b. u = p>2 .  c. u = 4p>3 .

x

y

1−1

3

2

1

 44. The curve with parametric equations

x = t, y = 1 - cos t, 0 … t … 2p

  is called a sinusoid and is shown in the accompanying figure. Find 
the point (x, y) where the slope of the tangent line is

a. largest.  b. smallest.

x

y

2

0 2p

The curves in Exercises 45 and 46 are called Bowditch curves or 
 Lissajous figures. In each case, find the point in the interior of the first 
quadrant where the tangent to the curve is horizontal, and find the 
equations of the two tangents at the origin.

T

11.3 Polar Coordinates

In this section we study polar coordinates and their relation to Cartesian coordinates. 
You will see that polar coordinates are very useful for calculating many multiple inte-
grals studied in Chapter 15. They are also useful in describing the paths of planets and 
satellites.
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668 Chapter 11 Parametric Equations and Polar Coordinates

Definition of Polar Coordinates

To define polar coordinates, we first fix an origin O (called the pole) and an initial ray 
from O (Figure 11.20). Usually the positive x-axis is chosen as the initial ray. Then each 
point P can be located by assigning to it a polar coordinate pair (r, u) in which r gives 
the directed distance from O to P and u gives the directed angle from the initial ray to ray 
OP. So we label the point P as

P(r, u)

Directed angle from 
initial ray to OP

Directed distance 
from O to P

O

r

Initial ray

Origin (pole)

x

P(r, u)

u

FIGURE 11.20 To define polar coordi-

nates for the plane, we start with an origin, 

called the pole, and an initial ray.

As in trigonometry, u is positive when measured counterclockwise and negative when 
measured clockwise. The angle associated with a given point is not unique. While a point 
in the plane has just one pair of Cartesian coordinates, it has infinitely many pairs of polar 
coordinates. For instance, the point 2 units from the origin along the ray u = p>6 has 
polar coordinates r = 2,  u = p>6. It also has coordinates r = 2, u = -11p>6 (Figure 
11.21). In some situations we allow r to be negative. That is why we use directed distance 
in defining P(r, u). The point P(2, 7p>6) can be reached by turning 7p>6 radians coun-
terclockwise from the initial ray and going forward 2 units (Figure 11.22). It can also be 
reached by turning p>6 radians counterclockwise from the initial ray and going backward 
2 units. So the point also has polar coordinates r = -2, u = p>6.

EXAMPLE 1  Find all the polar coordinates of the point P(2, p>6).

Solution We sketch the initial ray of the coordinate system, draw the ray from the origin 
that makes an angle of p>6 radians with the initial ray, and mark the point (2, p>6) 
 (Figure 11.23). We then find the angles for the other coordinate pairs of P in which r = 2 
and r = -2.

For r = 2, the complete list of angles is

p
6

, 
p
6
{ 2p, 

p
6
{ 4p, 

p
6
{ 6p,c.

For r = -2, the angles are

-  
5p
6

, -  
5p
6
{ 2p, -  

5p
6
{ 4p, -  

5p
6
{ 6p,c.

The corresponding coordinate pairs of P area2, 
p
6

+ 2npb ,  n = 0, {1, {2,c

and a-2, -  
5p
6

+ 2npb ,  n = 0, {1, {2, c.

When n = 0, the formulas give (2, p>6) and (-2, -5p>6). When n = 1, they give 
(2, 13p>6) and (-2, 7p>6), and so on. 

Polar Equations and Graphs

If we hold r fixed at a constant value r = a ≠ 0, the point P(r, u) will lie ! a !  units from 
the origin O. As u varies over any interval of length 2p, P then traces a circle of radius 
! a !  centered at O (Figure 11.24).

If we hold u fixed at a constant value u = u0 and let r vary between -q and q, the 
point P(r, u) traces the line through O that makes an angle of measure u0 with the initial 
ray. (See Figure 11.22 for an example.)

O x

Initial ray
u = 0

u = p!6

−
11p

6

P  2,      = P  2, −
11p

6
p
6a     b a           b

FIGURE 11.21 Polar coordinates are not 

unique.

O
x

u = 0

u = p!6

p!6

7p!6

P  2,        = P  –2,p
6

7p
6a      b a      b

FIGURE 11.22 Polar coordinates can 

have negative r-values.

O

7p!6

–5p!6

Initial ray
x

6

  2,      =   –2, – 5p
6

p
6

=   –2, 7p

etc.

p
6

a    b
a      b
a        b

FIGURE 11.23 The point P(2, p>6) 

has infinitely many polar coordinate pairs 

(Example 1).

x

0 a 0
r = a

O

FIGURE 11.24 The polar equation for a 

circle is r = a.
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 11.3  Polar Coordinates 669

EXAMPLE 2  A circle or line can have more than one polar equation.

(a) r = 1 and r = -1 are equations for the circle of radius 1 centered at O.

(b) u = p>6, u = 7p>6, and u = -5p>6 are equations for the line in Figure 11.23. 

Equations of the form r = a and u = u0 can be combined to define regions,  segments, 
and rays.

Equations Relating Polar and Cartesian Coordinates

x = r cos u,  y = r sin u,  r2 = x2 + y2,  tan u =
y
x

The first two of these equations uniquely determine the Cartesian coordinates x and y 
given the polar coordinates r and u. On the other hand, if x and y are given, the third equa-
tion gives two possible choices for r (a positive and a negative value). For each 
(x, y) ≠ (0, 0), there is a unique u∊ 30, 2p) satisfying the first two equations, each then 
giving a polar coordinate representation of the Cartesian point (x, y). The other polar coor-
dinate representations for the point can be determined from these two, as in Example 1.

EXAMPLE 4  Here are some plane curves expressed in terms of both polar coordi-
nate and Cartesian coordinate equations.

 Polar equation  Cartesian equivalent

 r cos u = 2  x = 2

 r2 cos u sin u = 4  xy = 4

 r2 cos2 u - r2 sin2 u = 1  x2 - y2 = 1

 r = 1 + 2r cos u  y2 - 3x2 - 4x - 1 = 0

 r = 1 - cos u  x4 + y4 + 2x2y2 + 2x3 + 2xy2 - y2 = 0

Some curves are more simply expressed with polar coordinates; others are not. 

EXAMPLE 3  Graph the sets of points whose polar coordinates satisfy the following 
conditions.

(a) 1 … r … 2  and  0 … u … p
2

(b) -3 … r … 2  and  u = p
4

(c) 
2p
3

… u … 5p
6
  (no restriction on r)

Solution The graphs are shown in Figure 11.25. 

Relating Polar and Cartesian Coordinates

When we use both polar and Cartesian coordinates in a plane, we place the two origins 
together and let the initial polar ray be the positive x-axis. The ray u = p>2, r 7 0, 
becomes the positive y-axis (Figure 11.26). The two coordinate systems are then related 
by the following equations.

x

y

0 1

(a)

2

x

y

0

3

(b)

2

(c)

x

y

0

1 ≤ r ≤ 2, 0 ≤ u ≤
p
2

u =    ,
p
4

−3 ≤ r ≤ 2p
4

2p
3

5p
6

2p
3

5p
6

≤ u ≤

FIGURE 11.25 The graphs of typical 

inequalities in r and u (Example 3).

x

y

Common
origin

0 Initial rayx

y
r

P(x, y) = P(r, u)

u = 0, r ≥ 0u

Ray u = p
2

FIGURE 11.26 The usual way to relate 

polar and Cartesian coordinates.
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670 Chapter 11 Parametric Equations and Polar Coordinates

EXAMPLE 5  Find a polar equation for the circle x2 + ( y - 3)2 = 9 (Figure 11.27).

Solution We apply the equations relating polar and Cartesian coordinates:

 x2 + ( y - 3)2 = 9

 x2 + y2 - 6y + 9 = 9   Expand ( y - 3)2. 

 x2 + y2 - 6y = 0   Cancelation

 r2 - 6r sin u = 0   x2 + y2 = r2, y = r sin u  

 r = 0 or r - 6 sin u = 0

 r = 6 sin u  Includes both possibilities 

EXAMPLE 6  Replace the following polar equations by equivalent Cartesian equa-
tions and identify their graphs.

(a) r cos u = -4

(b) r2 = 4r cos u

(c) r = 4
2 cos u - sin u

Solution We use the substitutions r cos u = x, r sin u = y, and r2 = x2 + y2.

(a) r cos u = -4

  The Cartesian equation:  r cos u = -4

 x = -4  

  The graph:  Vertical line through x = -4 on the x@axis

(b) r2 = 4r cos u

  The Cartesian equation: r2 = 4r cos u

   x2 + y2 = 4x Substitute.

   x2 - 4x + y2 = 0

   x2 - 4x + 4 + y2 = 4 Complete the square.

   (x - 2)2 + y2 = 4 Factor.

  The graph: Circle, radius 2, center (h, k) = (2, 0)

(c) r = 4
2 cos u - sin u

The Cartesian equation: r(2 cos u - sin u) = 4

2r cos u - r sin u = 4

2x - y = 4

y = 2x - 4

Substitute.

x

y

(0, 3)

0

x2 + ( y − 3)2 = 9
or

r = 6 sin u

FIGURE 11.27 The circle in Example 5.

Multiply by r.

Substitute.

Solve for y.

The graph:  Line, slope m = 2, y@intercept b = -4 

Polar Coordinates

 1. Which polar coordinate pairs label the same point?

  a. (3, 0) b. (-3, 0) c. (2, 2p>3)

  d. (2, 7p>3) e. (-3, p) f. (2, p>3)

  g. (-3, 2p) h. (-2, -p>3)

 2. Which polar coordinate pairs label the same point?

  a. (-2, p>3) b. (2, -p>3) c. (r, u)

  d. (r, u + p) e. (-r, u) f. (2, -2p>3)

  g. (-r, u + p) h. (-2, 2p>3)

EXERCISES 11.3
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 11.4  Graphing Polar Coordinate Equations 671

 21. 0 … u … p, r = 1 22. 0 … u … p, r = -1

 23. p>4 … u … 3p>4, 0 … r … 1

 24. -p>4 … u … p>4, -1 … r … 1

 25. -p>2 … u … p>2, 1 … r … 2

 26. 0 … u … p>2, 1 … ! r ! … 2

Polar to Cartesian Equations

Replace the polar equations in Exercises 27–52 with equivalent 
 Cartesian equations. Then describe or identify the graph.

 27. r cos u = 2 28. r sin u = -1

 29. r sin u = 0 30. r cos u = 0

 31. r = 4 csc u 32. r = -3 sec u

 33. r cos u + r sin u = 1 34. r sin u = r cos u

 35. r2 = 1 36. r2 = 4r sin u

 37. r =
5

sin u - 2 cos u
 38. r2 sin 2u = 2

 39. r = cot u csc u 40. r = 4 tan u sec u

 41. r = csc u er cos u 42. r sin u = ln r + ln cos u

 43. r2 + 2r2 cos u sin u = 1 44. cos2 u = sin2 u

 45. r2 = -4r cos u 46. r2 = -6r sin u

 47. r = 8 sin u 48. r = 3 cos u

 49. r = 2 cos u + 2 sin u 50. r = 2 cos u - sin u

 51. r sin au +
p
6
b = 2

 52. r sin a2p
3

- ub = 5

Cartesian to Polar Equations

Replace the Cartesian equations in Exercises 53–66 with equivalent 
polar equations.

 53. x = 7 54. y = 1 55. x = y

 56. x - y = 3 57. x2 + y2 = 4 58. x2 - y2 = 1

 59. 
x2

9
+

y2

4
= 1 60. xy = 2

 61. y2 = 4x 62. x2 + xy + y2 = 1

 63. x2 + (y - 2)2 = 4 64. (x - 5)2 + y2 = 25

 65. (x - 3)2 + (y + 1)2 = 4 66. (x + 2)2 + (y - 5)2 = 16

 67. Find all polar coordinates of the origin.

 68. Vertical and horizontal lines

a. Show that every vertical line in the xy-plane has a polar 
 equation of the form r = a sec u.

b. Find the analogous polar equation for horizontal lines in the 
xy-plane.

 3. Plot the following points (given in polar coordinates). Then find 
all the polar coordinates of each point.

a. (2, p>2) b. (2, 0)

c. (-2, p>2) d. (-2, 0)

 4. Plot the following points (given in polar coordinates). Then find 
all the polar coordinates of each point.

a. (3, p>4) b. (-3, p>4)

c. (3, -p>4) d. (-3, -p>4)

Polar to Cartesian Coordinates

 5. Find the Cartesian coordinates of the points in Exercise 1.

 6. Find the Cartesian coordinates of the following points (given in 
polar coordinates).

a. 122, p>42 b. (1, 0)

c. (0, p>2) d. 1-22, p>42
e. (-3, 5p>6) f. (5, tan-1 (4>3))

g. (-1, 7p) h. 1223, 2p>32
Cartesian to Polar Coordinates

 7. Find the polar coordinates, 0 … u 6 2p and r Ú 0, of the 
 following points given in Cartesian coordinates.

a. (1, 1) b. (-3, 0)

c. 123, -12 d. (-3, 4)

 8. Find the polar coordinates, -p … u 6 p and r Ú 0, of the 
 following points given in Cartesian coordinates.

a. (-2, -2) b. (0, 3)

c. 1-23, 12 d. (5, -12)

 9. Find the polar coordinates, 0 … u 6 2p and r … 0, of the 
 following points given in Cartesian coordinates.

a. (3, 3) b. (-1, 0)

c. 1-1, 232 d. (4, -3)

 10. Find the polar coordinates, -p … u 6 2p and r … 0, of the 
 following points given in Cartesian coordinates.

a. (-2, 0) b. (1, 0)

c. (0, -3) d. a23
2

, 
1
2
b

Graphing Sets of Polar Coordinate Points

Graph the sets of points whose polar coordinates satisfy the equations 
and inequalities in Exercises 11–26.

 11. r = 2 12. 0 … r … 2

 13. r Ú 1 14. 1 … r … 2

 15. 0 … u … p>6, r Ú 0 16. u = 2p>3, r … -2

 17. u = p>3, -1 … r … 3 18. u = 11p>4, r Ú -1

 19. u = p>2, r Ú 0 20. u = p>2, r … 0

11.4 Graphing Polar Coordinate Equations

It is often helpful to graph an equation expressed in polar coordinates in the Cartesian  
xy-plane. This section describes some techniques for graphing these equations using sym-
metries and tangents to the graph.
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672 Chapter 11 Parametric Equations and Polar Coordinates

Symmetry

The following list shows how to test for three standard types of symmetries when using 
polar coordinates. These symmetries are illustrated in Figure 11.28.

Symmetry Tests for Polar Graphs in the Cartesian xy-Plane
1. Symmetry about the x-axis: If the point (r, u) lies on the graph, then the point 

(r, -u) or (-r, p - u) lies on the graph (Figure 11.28a).

2. Symmetry about the y-axis: If the point (r, u) lies on the graph, then the point 
(r, p - u) or (-r, -u) lies on the graph (Figure 11.28b).

3. Symmetry about the origin: If the point (r, u) lies on the graph, then the point 
(-r, u) or (r, u + p) lies on the graph (Figure 11.28c).

Slope

The slope of a polar curve r = ƒ(u) in the xy-plane is dy>dx, but this is not given by the 
formula r′ = dƒ>du. To see why, think of the graph of ƒ as the graph of the parametric 
equations

x = r cos u = ƒ(u) cos u,  y = r sin u = ƒ(u) sin u.

If ƒ is a differentiable function of u, then so are x and y and, when dx>du ≠ 0, we can 
calculate dy >dx from the parametric formula

 
dy

dx
=

dy>du
dx>du   Section 11.2, Eq. (1) with t = u  

 =

d
du

 (ƒ(u) sin u)

d
du

 (ƒ(u) cos u)
  Substitute

 =

df

du
 sin u + ƒ(u) cos u

df

du
 cos u - ƒ(u) sin u

  Product Rule for derivatives

Therefore we see that dy>dx is not the same as dƒ>du.

x

y

(r, u)

(r, −u)
or (−r, p − u)

0

(a)  About the x-axis

x

y

0

0

(b)  About the y-axis

(r, p − u)
or (−r, −u) (r, u)

x

y

(−r, u) or (r, u + p)

(c)  About the origin

(r, u)

FIGURE 11.28 Three tests for symmetry 

in polar coordinates.

Slope of the Curve r = ƒ(U) in the Cartesian xy-Plane

 
dy

dx
`
(r, u)

=
ƒ′(u) sin u + ƒ(u) cos u

ƒ′(u) cos u - ƒ(u) sin u
 (1)

provided dx>du ≠ 0 at (r, u).

If the curve r = ƒ(u) passes through the origin at u = u0, then ƒ(u0) = 0, and the 
slope equation gives

dy

dx
`
(0, u0)

=
ƒ′(u0) sin u0

ƒ′(u0) cos u0
= tan u0.

That is, the slope at (0, u0) is tan u0. The reason we say “slope at (0, u0)” and not just 
“slope at the origin” is that a polar curve may pass through the origin (or any point) more 
than once, with different slopes at different u@values. This is not the case in our first exam-
ple, however.
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 11.4  Graphing Polar Coordinate Equations 673

EXAMPLE 1  Graph the curve r = 1 - cos u in the Cartesian xy-plane.

Solution The curve is symmetric about the x-axis because

 (r, u) on the graph 1  r = 1 - cos u

 1  r = 1 - cos (-u)   cos u = cos (-u) 

 1  (r, -u) on the graph.

As u increases from 0 to p, cos u decreases from 1 to -1, and r = 1 - cos u increases 
from a minimum value of 0 to a maximum value of 2. As u continues on from p to 
2p, cos u increases from -1 back to 1 and r decreases from 2 back to 0. The curve starts 
to repeat when u = 2p because the cosine has period 2p.

The curve leaves the origin with slope tan (0) = 0 and returns to the origin with slope 
tan (2p) = 0.

We make a table of values from u = 0 to u = p, plot the points, draw a smooth curve 
through them with a horizontal tangent at the origin, and reflect the curve across the x-axis to 
complete the graph (Figure 11.29). The curve is called a cardioid because of its heart shape. 

EXAMPLE 2  Graph the curve r2 = 4 cos u in the Cartesian xy-plane.

Solution The equation r2 = 4 cos u requires cos u Ú 0, so we get the entire graph by 
running u from -p>2 to p>2. The curve is symmetric about the x-axis because

 (r, u) on the graph 1  r2 = 4 cos u

 1  r2 = 4 cos (-u)   cos  u = cos (-u) 

 1  (r, -u) on the graph.

The curve is also symmetric about the origin because

 (r, u) on the graph 1  r2 = 4 cos u

 1  (-r)2 = 4 cos u

 1  (-r, u) on the graph.

Together, these two symmetries imply symmetry about the y-axis.
The curve passes through the origin when u = -p>2 and u = p>2. It has a vertical 

tangent both times because tan u is infinite.
For each value of u in the interval between -p>2 and p>2, the formula r2 = 4 cos u 

gives two values of r:

r = {22cos u.

We make a short table of values, plot the corresponding points, and use information about sym-
metry and tangents to guide us in connecting the points with a smooth curve (Figure 11.30).

(a)

(p, 2)

(p, 2)

3
2

(b)

x

y

02

1

(c)

y

x
02

1

r = 1 − cos u

2p
3

3
2

,

1,
p
2

p
3

1
2

,

2p
3

3
2

,

4p
3

3
2

,

1,
p
2

1,
3p
2

p
3

1
2

,

5p
3

1
2

,

a   b

a   b

a     b

a     b

a     b
a     b

a    b

a   b

a   b

 U r = 1 − cos U

 0  0

 
p
3

 
1
2

 
p
2

 1

 
2p
3

 
3
2

 p  2

FIGURE 11.29 The steps in graphing the 

cardioid r = 1 - cos u (Example 1). The 

arrow shows the direction of increasing u.

 U  cos U r = t22cos U

 0  1  {2

 {p
6

 
23
2

 ≈{1.9

 {p
4

 
1

22
 ≈{1.7

 {p
3

 
1
2

 ≈{1.4

 {p
2

 0  0

(b)

x

y

r2 = 4 cos u

2 2
0

Loop for r = −2"cos u,

 ≤ u ≤ p
2

p
2

−  ≤ u ≤ p
2

p
2

−

Loop for r = 2"cos u,

FIGURE 11.30 The graph of r2 = 4 cos u. The arrows show the direction of increasing u.  

The values of r in the table are rounded (Example 2). 

(a)
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674 Chapter 11 Parametric Equations and Polar Coordinates

Converting a Graph from the r U- to xy-Plane

One way to graph a polar equation r = ƒ(u) in the xy-plane is to make a table of 
(r, u)@values, plot the corresponding points there, and connect them in order of increasing 
u. This can work well if enough points have been plotted to reveal all the loops and dim-
ples in the graph. Another method of graphing is to

1. first graph the function r = ƒ(u) in the Cartesian ru@plane,

2.  then use that Cartesian graph as a “table” and guide to sketch the polar coordinate 
graph in the xy-plane.

This method is sometimes better than simple point plotting because the first Cartesian 
graph shows at a glance where r is positive, negative, and nonexistent, as well as where r is 
increasing and decreasing. Here is an example.

EXAMPLE 3  Graph the lemniscate curve r2 = sin 2u in the Cartesian xy-plane.

Solution For this example it will be easier to first plot r2, instead of r, as a function of u 
in the Cartesian r2u@plane (see Figure 11.31a). We pass from there to the graph of 
r = {2sin 2u in the ru@plane (Figure 11.31b), and then draw the polar graph (Figure 
11.31c). The graph in Figure 11.31b “covers” the final polar graph in Figure 11.31c twice. 
We could have managed with either loop alone, with the two upper halves, or with the two 
lower halves. The double covering does no harm, however, and we actually learn a little 
more about the behavior of the function this way. 

USING TECHNOLOGY  Graphing Polar Curves Parametrically
For complicated polar curves we may need to use a graphing calculator or computer to 
graph the curve. If the device does not plot polar graphs directly, we can convert r = ƒ(u) 
into parametric form using the equations

x = r cos u = ƒ(u) cos u,  y = r sin u = ƒ(u) sin u.

Then we use the device to draw a parametrized curve in the Cartesian xy-plane.

−1

0

1

3p
2p2

p
4

p

p

2

r2 = sin 2u

(a)

(b)

(c)

−1

1

0
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FIGURE 11.31 To plot r = ƒ(u) in 

the Cartesian ru@plane in (b), we first 

plot r2 = sin 2u in the r2u@plane in (a) 

and then ignore the values of u for which 

sin 2u is negative. The radii from the 

sketch in (b) cover the polar graph of the 

lemniscate in (c) twice (Example 3).

Symmetries and Polar Graphs

Identify the symmetries of the curves in Exercises 1–12. Then sketch 
the curves in the xy-plane.

 1. r = 1 + cos u 2. r = 2 - 2 cos u

 3. r = 1 - sin u 4. r = 1 + sin u

 5. r = 2 + sin u 6. r = 1 + 2 sin u

 7. r = sin (u>2) 8. r = cos (u>2)

 9. r2 = cos u 10. r2 = sin u

 11. r2 = -sin u 12. r2 = -cos u

Graph the lemniscates in Exercises 13–16. What symmetries do these 
curves have?

 13. r2 = 4 cos 2u 14. r2 = 4 sin 2u

 15. r2 = -sin 2u 16. r2 = -cos 2u

Slopes of Polar Curves in the xy-Plane

Find the slopes of the curves in Exercises 17–20 at the given points. 
Sketch the curves along with their tangents at these points.

 17. Cardioid r = -1 + cos u; u = {p>2
 18. Cardioid r = -1 + sin u; u = 0, p

 19. Four-leaved rose r = sin 2u; u = {p>4, {3p>4
 20. Four-leaved rose r = cos 2u; u = 0, {p>2, p

EXERCISES 11.4
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Concavity of Polar Curves in the xy-Plane

Equation (1) gives the formula for the derivative y′ of a polar curve 

r = ƒ(u). The second derivative is 
d2y

dx2
=

dy′>du
dx>du  (see Equation (2) in

Section 11.2). Find the slope and concavity of the curves in Exercises 
21–24 at the given points.

 21. r = sin u, u = p>6, p>3 22. r = eu, u = 0, p

 23. r = u, u = 0, p>2 24. r = 1>u, u = -p, 1

Graphing Limaçons

Graph the limaçons in Exercises 25–28. Limaçon (“lee-ma-sahn”) is 
Old French for “snail.” You will understand the name when you graph 
the limaçons in Exercise 25. Equations for limaçons have the form 
r = a { b cos u or r = a { b sin u. There are four basic shapes.

 25. Limaçons with an inner loop

a. r = 1
2

+ cos u b. r = 1
2

+ sin u

 26. Cardioids

a. r = 1 - cos u b. r = -1 + sin u

 27. Dimpled limaçons

a. r =
3
2

+ cos u b. r =
3
2

- sin u

 28. Oval limaçons

a. r = 2 + cos u b. r = -2 + sin u

Graphing Polar Regions and Curves in the xy-Plane

 29. Sketch the region defined by the inequalities -1 … r … 2 and 
-p>2 … u … p>2.

 30. Sketch the region defined by the inequalities 0 … r … 2 sec u and 
-p>4 … u … p>4.

In Exercises 31 and 32, sketch the region defined by the inequality.

 31. 0 … r … 2 - 2 cos u 32. 0 … r2 … cos u

 33. Which of the following has the same graph as r = 1 - cos u?

a. r = -1 - cos u b. r = 1 + cos u

Confirm your answer with algebra.

 34. Which of the following has the same graph as r = cos 2u?

a. r = -sin (2u + p>2) b. r = -cos (u>2)

Confirm your answer with algebra.

 35. A rose within a rose Graph the equation r = 1 - 2 sin 3u.

 36. The nephroid of Freeth Graph the nephroid of Freeth:

r = 1 + 2 sin 
u
2

.

 37. Roses Graph the roses r = cos mu for m = 1>3, 2, 3, and 7.

 38. Spirals Polar coordinates are just the thing for defining spirals. 
Graph the following spirals.

a. r = u

b. r = -u

c. A logarithmic spiral: r = eu>10

d. A hyperbolic spiral: r = 8>u
e. An equilateral hyperbola: r = {10>2u

(Use di!erent colors for the two branches.)

 39. Graph the equation r = sin 18
7 u2 for 0 … u … 14p.

 40. Graph the equation

r = sin2 (2.3u) + cos4 (2.3u)

for 0 … u … 10p.
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T
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T

T

T

T

T

11.5 Areas and Lengths in Polar Coordinates

This section shows how to calculate areas of plane regions and lengths of curves in polar 
coordinates.

Area in the Plane

The region OTS in Figure 11.32 is bounded by the rays u = a and u = b and the curve 
r = ƒ(u). We approximate the region with n nonoverlapping fan-shaped circular sectors 
based on a partition P of angle TOS. The typical sector has radius rk = ƒ(uk) and central 
angle of radian measure ∆uk. Its area is ∆uk>2p times the area of a circle of radius rk , or

Ak = 1
2

 rk 2 ∆uk = 1
2

 1ƒ(uk)22 ∆uk.

The area of region OTS is approximately

a
n

k = 1
 Ak = a

n

k = 1

 
1
2

 1ƒ(uk)22 ∆uk.

If ƒ is continuous, we expect the approximations to improve as the norm of the parti-
tion P goes to zero, where the norm of P is the largest value of ∆uk. We are therefore led to 
the following formula for the region’s area:

x

y

O

S rn

rk

u = b

u = ar1

r2

uk

r = f (u)

( f (uk), uk)

Δuk

T

FIGURE 11.32 To derive a formula for 

the area of region OTS, we approximate 

the region with fan-shaped circular sectors.
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