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CHAPTER OUTLINE

3Equilibrium

3/1 Introduction
Statics deals primarily with the description of the force conditions

necessary and sufficient to maintain the equilibrium of engineering
structures. This chapter on equilibrium, therefore, constitutes the
most important part of statics, and the procedures developed here form
the basis for solving problems in both statics and dynamics. We will
make continual use of the concepts developed in Chapter 2 involving
forces, moments, couples, and resultants as we apply the principles of
equilibrium.

When a body is in equilibrium, the resultant of all forces acting on
it is zero. Thus, the resultant force R and the resultant couple M are
both zero, and we have the equilibrium equations

(3/1)

These requirements are both necessary and sufficient conditions for
equilibrium.

All physical bodies are three-dimensional, but we can treat many of
them as two-dimensional when the forces to which they are subjected
act in a single plane or can be projected onto a single plane. When this
simplification is not possible, the problem must be treated as three-
dimensional. We will follow the arrangement used in Chapter 2, and dis-
cuss in Section A the equilibrium of bodies subjected to two-dimensional

R � ΣF � 0   M � ΣM � 0



SECTION A EQUILIBRIUM IN TWO DIMENSIONS

3/2 System Isolation and the Free-Body Diagram
Before we apply Eqs. 3/1, we must define unambiguously the partic-

ular body or mechanical system to be analyzed and represent clearly
and completely all forces acting on the body. Omission of a force which
acts on the body in question, or inclusion of a force which does not act
on the body, will give erroneous results.

A mechanical system is defined as a body or group of bodies which
can be conceptually isolated from all other bodies. A system may be a
single body or a combination of connected bodies. The bodies may be
rigid or nonrigid. The system may also be an identifiable fluid mass, ei-
ther liquid or gas, or a combination of fluids and solids. In statics we
study primarily forces which act on rigid bodies at rest, although we also
study forces acting on fluids in equilibrium.

Once we decide which body or combination of bodies to analyze, we
then treat this body or combination as a single body isolated from all
surrounding bodies. This isolation is accomplished by means of the
free-body diagram, which is a diagrammatic representation of the
isolated system treated as a single body. The diagram shows all forces
applied to the system by mechanical contact with other bodies, which
are imagined to be removed. If appreciable body forces are present,
such as gravitational or magnetic attraction, then these forces must
also be shown on the free-body diagram of the isolated system. Only
after such a diagram has been carefully drawn should the equilibrium
equations be written. Because of its critical importance, we emphasize
here that

the free-body diagram is the most important single 
step in the solution of problems in mechanics.

Before attempting to draw a free-body diagram, we must recall the
basic characteristics of force. These characteristics were described in
Art. 2/2, with primary attention focused on the vector properties of
force. Forces can be applied either by direct physical contact or by re-
mote action. Forces can be either internal or external to the system
under consideration. Application of force is accompanied by reactive
force, and both applied and reactive forces may be either concentrated
or distributed. The principle of transmissibility permits the treatment
of force as a sliding vector as far as its external effects on a rigid body
are concerned.

We will now use these force characteristics to develop conceptual
models of isolated mechanical systems. These models enable us to
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force systems and in Section B the equilibrium of bodies subjected to
three-dimensional force systems.



write the appropriate equations of equilibrium, which can then be
analyzed.

Modeling the Action of Forces
Figure 3/1 shows the common types of force application on mechani-

cal systems for analysis in two dimensions. Each example shows the
force exerted on the body to be isolated, by the body to be removed. New-
ton’s third law, which notes the existence of an equal and opposite reac-
tion to every action, must be carefully observed. The force exerted on
the body in question by a contacting or supporting member is always in
the sense to oppose the movement of the isolated body which would
occur if the contacting or supporting body were removed.
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MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS
Type of Contact and Force Origin

1. Flexible cable, belt,
chain, or rope

2. Smooth surfaces

3. Rough surfaces

4. Roller support

5. Freely sliding guide

Action on Body to Be Isolated

Force exerted by 
a flexible cable is 
always a tension away 
from the body in the 
direction of the cable.

Contact force is 
compressive and is 
normal to the surface.

Rough surfaces are 
capable of supporting 
a tangential compo-
nent F (frictional 
force) as well as a 
normal component 
N of the resultant 
contact force R.

Roller, rocker, or ball 
support transmits a 
compressive force 
normal to the 
supporting surface.

Collar or slider free to 
move along smooth 
guides; can support 
force normal to guide 
only.

θ

θ

Weight of cable
negligible

Weight of cable
not negligible

T

T

N

N

N

N

F

R

N N

Figure 3/1



In Fig. 3/1, Example 1 depicts the action of a flexible cable, belt, rope,
or chain on the body to which it is attached. Because of its flexibility, a
rope or cable is unable to offer any resistance to bending, shear, or com-
pression and therefore exerts only a tension force in a direction tangent to
the cable at its point of attachment. The force exerted by the cable on the
body to which it is attached is always away from the body. When the ten-
sion T is large compared with the weight of the cable, we may assume that
the cable forms a straight line. When the cable weight is not negligible
compared with its tension, the sag of the cable becomes important, and
the tension in the cable changes direction and magnitude along its length.

When the smooth surfaces of two bodies are in contact, as in Exam-
ple 2, the force exerted by one on the other is normal to the tangent to
the surfaces and is compressive. Although no actual surfaces are per-
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MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS (cont.)
Type of Contact and Force Origin

6. Pin connection

7. Built-in or fixed support

8. Gravitational attraction

9. Spring action

Action on Body to Be Isolated

A freely hinged pin 
connection is capable 
of supporting a force 
in any direction in the 
plane normal to the 
pin axis. We may 
either show two 
components Rx and
Ry or a magnitude R
and direction   . A pin 
not free to turn also 
supports a couple M.

A built-in or fixed 
support is capable of 
supporting an axial 
force F, a transverse 
force V (shear force), 
and a couple M
(bending moment) to 
prevent rotation.

The resultant of 
gravitational
attraction on all 
elements of a body of 
mass m is the weight 
W = mg and acts 
toward the center of 
the earth through the 
center mass G.

Spring force is tensile 
if spring is stretched 
and compressive if 
compressed. For a 
linearly elastic spring 
the stiffness k is the 
force required to 
deform the spring a 
unit distance.

Pin free to turn

Pin not free to turn

Ry

Rx

Ry

Rx

R

Weld

A

M

F

V

or
AA

W = mg

F

Gm

F
x

F = kx
Hardening

NonlinearLinear
Neutral
position

Softening

F

x

F

x

θ

θ

M

Figure 3/1, continued



fectly smooth, we can assume this to be so for practical purposes in
many instances.

When mating surfaces of contacting bodies are rough, as in Exam-
ple 3, the force of contact is not necessarily normal to the tangent to the
surfaces, but may be resolved into a tangential or frictional component F
and a normal component N.

Example 4 illustrates a number of forms of mechanical support
which effectively eliminate tangential friction forces. In these cases the
net reaction is normal to the supporting surface.

Example 5 shows the action of a smooth guide on the body it sup-
ports. There cannot be any resistance parallel to the guide.

Example 6 illustrates the action of a pin connection. Such a connec-
tion can support force in any direction normal to the axis of the pin. We
usually represent this action in terms of two rectangular components.
The correct sense of these components in a specific problem depends on
how the member is loaded. When not otherwise initially known, the
sense is arbitrarily assigned and the equilibrium equations are then
written. If the solution of these equations yields a positive algebraic sign
for the force component, the assigned sense is correct. A negative sign
indicates the sense is opposite to that initially assigned.

If the joint is free to turn about the pin, the connection can support
only the force R. If the joint is not free to turn, the connection can also
support a resisting couple M. The sense of M is arbitrarily shown here,
but the true sense depends on how the member is loaded.

Example 7 shows the resultants of the rather complex distribution
of force over the cross section of a slender bar or beam at a built-in or
fixed support. The sense of the reactions F and V and the bending cou-
ple M in a given problem depends, of course, on how the member is
loaded.

One of the most common forces is that due to gravitational attrac-
tion, Example 8. This force affects all elements of mass in a body and is,
therefore, distributed throughout it. The resultant of the gravitational
forces on all elements is the weight W � mg of the body, which passes
through the center of mass G and is directed toward the center of the
earth for earthbound structures. The location of G is frequently obvious
from the geometry of the body, particularly where there is symmetry.
When the location is not readily apparent, it must be determined by ex-
periment or calculations.

Similar remarks apply to the remote action of magnetic and electric
forces. These forces of remote action have the same overall effect on a
rigid body as forces of equal magnitude and direction applied by direct
external contact.

Example 9 illustrates the action of a linear elastic spring and of a
nonlinear spring with either hardening or softening characteristics. The
force exerted by a linear spring, in tension or compression, is given by 
F � kx, where k is the stiffness of the spring and x is its deformation
measured from the neutral or undeformed position.

The representations in Fig. 3/1 are not free-body diagrams, but are
merely elements used to construct free-body diagrams. Study these nine
conditions and identify them in the problem work so that you can draw
the correct free-body diagrams.
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This apparatus is designed to hold
a car body in equilibrium for a wide
range of orientations during vehicle
production.

©
 P

e
te

r B
ia

lo
b

rz
e

sk
i/

La
if/

R
e

d
u

x



114 Chapter 3 Equilibrium

Construction of Free-Body Diagrams
The full procedure for drawing a free-body diagram which isolates a
body or system consists of the following steps.

Step 1. Decide which system to isolate. The system chosen should
usually involve one or more of the desired unknown quantities.

Step 2. Next isolate the chosen system by drawing a diagram which
represents its complete external boundary. This boundary defines the
isolation of the system from all other attracting or contacting bodies,
which are considered removed. This step is often the most crucial of all.
Make certain that you have completely isolated the system before pro-
ceeding with the next step.

Step 3. Identify all forces which act on the isolated system as ap-
plied by the removed contacting and attracting bodies, and represent
them in their proper positions on the diagram of the isolated system.
Make a systematic traverse of the entire boundary to identify all contact
forces. Include body forces such as weights, where appreciable. Repre-
sent all known forces by vector arrows, each with its proper magnitude,
direction, and sense indicated. Each unknown force should be repre-
sented by a vector arrow with the unknown magnitude or direction indi-
cated by symbol. If the sense of the vector is also unknown, you must
arbitrarily assign a sense. The subsequent calculations with the equilib-
rium equations will yield a positive quantity if the correct sense was as-
sumed and a negative quantity if the incorrect sense was assumed. It is
necessary to be consistent with the assigned characteristics of unknown
forces throughout all of the calculations. If you are consistent, the solu-
tion of the equilibrium equations will reveal the correct senses.

Step 4. Show the choice of coordinate axes directly on the diagram.
Pertinent dimensions may also be represented for convenience. Note,
however, that the free-body diagram serves the purpose of focusing at-
tention on the action of the external forces, and therefore the diagram
should not be cluttered with excessive extraneous information. Clearly
distinguish force arrows from arrows representing quantities other than
forces. For this purpose a colored pencil may be used.

KEY CONCEPTS

Completion of the foregoing four steps will produce a correct free-
body diagram to use in applying the governing equations, both in statics
and in dynamics. Be careful not to omit from the free-body diagram cer-
tain forces which may not appear at first glance to be needed in the cal-
culations. It is only through complete isolation and a systematic
representation of all external forces that a reliable accounting of the ef-
fects of all applied and reactive forces can be made. Very often a force
which at first glance may not appear to influence a desired result does
indeed have an influence. Thus, the only safe procedure is to include on
the free-body diagram all forces whose magnitudes are not obviously
negligible.



The free-body method is extremely important in mechanics because
it ensures an accurate definition of a mechanical system and focuses at-
tention on the exact meaning and application of the force laws of statics
and dynamics. Review the foregoing four steps for constructing a free-
body diagram while studying the sample free-body diagrams shown in
Fig. 3/2 and the Sample Problems which appear at the end of the next
article.

Examples of Free-Body Diagrams
Figure 3/2 gives four examples of mechanisms and structures to-

gether with their correct free-body diagrams. Dimensions and magni-
tudes are omitted for clarity. In each case we treat the entire system as

Figure 3/2
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V2. Cantilever beam

3. Beam

4. Rigid system of interconnected bodies
    analyzed as a single unit

1. Plane truss

Weight of truss
assumed negligible
compared with P

Mechanical System Free-Body Diagram of Isolated Body

SAMPLE FREE-BODY DIAGRAMS

W = mg

W = mg

W = mg

Smooth surface
contact at A.
Mass m

P

A B

m

M

Bx
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Weight of mechanism
neglected

P
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a single body, so that the internal forces are not shown. The characteris-
tics of the various types of contact forces illustrated in Fig. 3/1 are used
in the four examples as they apply.

In Example 1 the truss is composed of structural elements which,
taken all together, constitute a rigid framework. Thus, we may remove
the entire truss from its supporting foundation and treat it as a single
rigid body. In addition to the applied external load P, the free-body dia-
gram must include the reactions on the truss at A and B. The rocker at
B can support a vertical force only, and this force is transmitted to the
structure at B (Example 4 of Fig. 3/1). The pin connection at A (Exam-
ple 6 of Fig. 3/1) is capable of supplying both a horizontal and a vertical
force component to the truss. If the total weight of the truss members is
appreciable compared with P and the forces at A and B, then the
weights of the members must be included on the free-body diagram as
external forces.

In this relatively simple example it is clear that the vertical compo-
nent Ay must be directed down to prevent the truss from rotating clock-
wise about B. Also, the horizontal component Ax will be to the left to
keep the truss from moving to the right under the influence of the hori-
zontal component of P. Thus, in constructing the free-body diagram for
this simple truss, we can easily perceive the correct sense of each of the
components of force exerted on the truss by the foundation at A and can,
therefore, represent its correct physical sense on the diagram. When the
correct physical sense of a force or its component is not easily recog-
nized by direct observation, it must be assigned arbitrarily, and the cor-
rectness of or error in the assignment is determined by the algebraic
sign of its calculated value.

In Example 2 the cantilever beam is secured to the wall and sub-
jected to three applied loads. When we isolate that part of the beam to
the right of the section at A, we must include the reactive forces applied
to the beam by the wall. The resultants of these reactive forces are
shown acting on the section of the beam (Example 7 of Fig. 3/1). A verti-
cal force V to counteract the excess of downward applied force is shown,
and a tension F to balance the excess of applied force to the right must
also be included. Then, to prevent the beam from rotating about A, a
counterclockwise couple M is also required. The weight mg of the beam
must be represented through the mass center (Example 8 of Fig. 3/1).

In the free-body diagram of Example 2, we have represented the
somewhat complex system of forces which actually act on the cut section
of the beam by the equivalent force–couple system in which the force is
broken down into its vertical component V (shear force) and its horizon-
tal component F (tensile force). The couple M is the bending moment in
the beam. The free-body diagram is now complete and shows the beam
in equilibrium under the action of six forces and one couple.

In Example 3 the weight W � mg is shown acting through the cen-
ter of mass of the beam, whose location is assumed known (Example 8 of
Fig. 3/1). The force exerted by the corner A on the beam is normal to the
smooth surface of the beam (Example 2 of Fig. 3/1). To perceive this ac-
tion more clearly, visualize an enlargement of the contact point A,
which would appear somewhat rounded, and consider the force exerted
by this rounded corner on the straight surface of the beam, which is as-
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sumed to be smooth. If the contacting surfaces at the corner were not
smooth, a tangential frictional component of force could exist. In addi-
tion to the applied force P and couple M, there is the pin connection at
B, which exerts both an x- and a y-component of force on the beam. The
positive senses of these components are assigned arbitrarily.

In Example 4 the free-body diagram of the entire isolated mecha-
nism contains three unknown forces if the loads mg and P are known.
Any one of many internal configurations for securing the cable leading
from the mass m would be possible without affecting the external re-
sponse of the mechanism as a whole, and this fact is brought out by the
free-body diagram. This hypothetical example is used to show that the
forces internal to a rigid assembly of members do not influence the val-
ues of the external reactions.

We use the free-body diagram in writing the equilibrium equations,
which are discussed in the next article. When these equations are
solved, some of the calculated force magnitudes may be zero. This would
indicate that the assumed force does not exist. In Example 1 of Fig. 3/2,
any of the reactions Ax, Ay, or By can be zero for specific values of the
truss geometry and of the magnitude, direction, and sense of the applied
load P. A zero reaction force is often difficult to identify by inspection,
but can be determined by solving the equilibrium equations.

Similar comments apply to calculated force magnitudes which are
negative. Such a result indicates that the actual sense is the opposite of
the assumed sense. The assumed positive senses of Bx and By in Exam-
ple 3 and By in Example 4 are shown on the free-body diagrams. The
correctness of these assumptions is proved or disproved according to
whether the algebraic signs of the computed forces are plus or minus
when the calculations are carried out in an actual problem.

The isolation of the mechanical system under consideration is a cru-
cial step in the formulation of the mathematical model. The most impor-
tant aspect to the correct construction of the all-important free-body
diagram is the clear-cut and unambiguous decision as to what is in-
cluded and what is excluded. This decision becomes unambiguous only
when the boundary of the free-body diagram represents a complete tra-
verse of the body or system of bodies to be isolated, starting at some ar-
bitrary point on the boundary and returning to that same point. The
system within this closed boundary is the isolated free body, and all con-
tact forces and all body forces transmitted to the system across the
boundary must be accounted for.

The following exercises provide practice with drawing free-body dia-
grams. This practice is helpful before using such diagrams in the appli-
cation of the principles of force equilibrium in the next article.
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Complex pulley systems are easily
handled with a systematic equilib-
rium analysis.
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necessary in each case to form a complete free-body
diagram. The weights of the bodies are negligible un-
less otherwise indicated. Dimensions and numerical
values are omitted for simplicity.
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FREE-BODY DIAGRAM EXERCISES

3/A In each of the five following examples, the body to be
isolated is shown in the left-hand diagram, and an in-
complete free-body diagram (FBD) of the isolated
body is shown on the right. Add whatever forces are

Problem 3/A

1. Bell crank
    supporting mass
    m with pin support
    at A.

2. Control lever
    applying torque

to shaft at O.

3. Boom OA, of
    negligible mass

compared with
    mass m. Boom
    hinged at O and
    supported by
    hoisting cable at B.

4. Uniform crate of
    mass m leaning
    against smooth
    vertical wall and
    supported on a 
    rough horizontal
    surface.

5. Loaded bracket
    supported by pin

connection at A and
    fixed pin in smooth
    slot at B.

Body Incomplete FBD

m

A

O

A

B

A

O
O

A

B

T

A

mg
T

Flexible
cable

Pull P P

FO

m mg

mg

B

B

A
Load L

B

A
L



3/B In each of the five following examples, the body to be
isolated is shown in the left-hand diagram, and either
a wrong or an incomplete free-body diagram (FBD) is
shown on the right. Make whatever changes or addi-
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tions are necessary in each case to form a correct and
complete free-body diagram. The weights of the bod-
ies are negligible unless otherwise indicated. Dimen-
sions and numerical values are omitted for simplicity.

Problem 3/B

mg

mg

1.

Wrong or Incomplete FBDBody

P

P

N

N

PLawn roller of 
mass m being
pushed up 
incline .

5. Bent rod welded to
support at A and 
subjected to two 
forces and couple.

4. Supporting angle
bracket for frame;
pin joints.

3. Uniform pole of 
mass m being
hoisted into posi-
tion by winch.
Horizontal sup-
porting surface
notched to prevent
slipping of pole.

2. Prybar lifting
body A having
smooth horizontal 
surface. Bar rests 
on horizontal 
rough surface.

P

T

R

R

A

Notch

y

x

M

F

M

F

P

A y

F

A

A

B

P

A

B



All forces, known and unknown, should be labeled.
(Note: The sense of some reaction components cannot
always be determined without numerical calculation.)
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3/C Draw a complete and correct free-body diagram of each
of the bodies designated in the statements. The weights
of the bodies are significant only if the mass is stated.

Problem 3/C

m

L

A

A B

A

A

B

C

A

B

B

3. Loaded truss supported by pin joint at 
A and by cable at B.

2. Wheel of mass m on verge of being
rolled over curb by pull P.

4. Uniform bar of mass m and roller of
mass m0 taken together. Subjected to 
couple M and supported as shown.
Roller is free to turn.

7. Uniform heavy plate of mass m
supported in vertical plane by cable
C and hinge A.

6. Bar, initially horizontal but deflected 
under load L. Pinned to rigid support 
at each end.

8. Entire frame, pulleys, and contacting
cable to be isolated as a single unit.

1. Uniform horizontal bar of mass m
suspended by vertical cable at A and
supported by rough inclined surface 
at B.

5. Uniform grooved wheel of mass m
supported by a rough surface and by 
action of horizontal cable.

m0
M

A

m

P

m

L

m

L



3/3 Equilibrium Conditions
In Art. 3/1 we defined equilibrium as the condition in which the re-

sultant of all forces and moments acting on a body is zero. Stated in an-
other way, a body is in equilibrium if all forces and moments applied to
it are in balance. These requirements are contained in the vector equa-
tions of equilibrium, Eqs. 3/1, which in two dimensions may be written
in scalar form as

(3/2)

The third equation represents the zero sum of the moments of all forces
about any point O on or off the body. Equations 3/2 are the necessary
and sufficient conditions for complete equilibrium in two dimensions.
They are necessary conditions because, if they are not satisfied, there can
be no force or moment balance. They are sufficient because once they are
satisfied, there can be no imbalance, and equilibrium is assured.

The equations relating force and acceleration for rigid-body motion
are developed in Vol. 2 Dynamics from Newton’s second law of motion.
These equations show that the acceleration of the mass center of a body
is proportional to the resultant force ΣF acting on the body. Conse-
quently, if a body moves with constant velocity (zero acceleration), the
resultant force on it must be zero, and the body may be treated as in a
state of translational equilibrium.

For complete equilibrium in two dimensions, all three of Eqs. 3/2
must hold. However, these conditions are independent requirements,
and one may hold without another. Take, for example, a body which
slides along a horizontal surface with increasing velocity under the ac-
tion of applied forces. The force–equilibrium equations will be satisfied in
the vertical direction where the acceleration is zero, but not in the hori-
zontal direction. Also, a body, such as a flywheel, which rotates about its
fixed mass center with increasing angular speed is not in rotational equi-
librium, but the two force–equilibrium equations will be satisfied.

Categories of Equilibrium
Applications of Eqs. 3/2 fall naturally into a number of categories

which are easily identified. The categories of force systems acting on
bodies in two-dimensional equilibrium are summarized in Fig. 3/3 and
are explained further as follows.

Category 1, equilibrium of collinear forces, clearly requires only
the one force equation in the direction of the forces (x-direction), since
all other equations are automatically satisfied.

Category 2, equilibrium of forces which lie in a plane (x-y plane)
and are concurrent at a point O, requires the two force equations only,
since the moment sum about O, that is, about a z-axis through O, is nec-
essarily zero. Included in this category is the case of the equilibrium of a
particle.

Category 3, equilibrium of parallel forces in a plane, requires the
one force equation in the direction of the forces (x-direction) and one mo-
ment equation about an axis (z-axis) normal to the plane of the forces.

ΣFx � 0   ΣFy � 0   ΣMO � 0
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Category 4, equilibrium of a general system of forces in a plane
(x-y), requires the two force equations in the plane and one moment
equation about an axis (z-axis) normal to the plane.

Two- and Three-Force Members
You should be alert to two frequently occurring equilibrium situa-

tions. The first situation is the equilibrium of a body under the action
of two forces only. Two examples are shown in Fig. 3/4, and we see
that for such a two-force member to be in equilibrium, the forces must
be equal, opposite, and collinear. The shape of the member does not af-
fect this simple requirement. In the illustrations cited, we consider the
weights of the members to be negligible compared with the applied
forces.

The second situation is a three-force member, which is a body under
the action of three forces, Fig. 3/5a. We see that equilibrium requires
the lines of action of the three forces to be concurrent. If they were not
concurrent, then one of the forces would exert a resultant moment
about the point of intersection of the other two, which would violate the
requirement of zero moment about every point. The only exception oc-
curs when the three forces are parallel. In this case we may consider the
point of concurrency to be at infinity.
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Figure 3/4
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The principle of the concurrency of three forces in equilibrium is of
considerable use in carrying out a graphical solution of the force equa-
tions. In this case the polygon of forces is drawn and made to close, as
shown in Fig. 3/5b. Frequently, a body in equilibrium under the action
of more than three forces may be reduced to a three-force member by a
combination of two or more of the known forces.

Alternative Equilibrium Equations
In addition to Eqs. 3/2, there are two other ways to express the gen-

eral conditions for the equilibrium of forces in two dimensions. The first
way is illustrated in Fig. 3/6, parts (a) and (b). For the body shown in
Fig. 3/6a, if ΣMA � 0, then the resultant, if it still exists, cannot be a
couple, but must be a force R passing through A. If now the equation
ΣFx � 0 holds, where the x-direction is arbitrary, it follows from Fig.
3/6b that the resultant force R, if it still exists, not only must pass
through A, but also must be perpendicular to the x-direction as shown.
Now, if ΣMB � 0, where B is any point such that the line AB is not per-
pendicular to the x-direction, we see that R must be zero, and thus the
body is in equilibrium. Therefore, an alternative set of equilibrium
equations is

where the two points A and B must not lie on a line perpendicular to the
x-direction.

A third formulation of the equilibrium conditions may be made for
a coplanar force system. This is illustrated in Fig. 3/6, parts (c) and
(d). Again, if ΣMA � 0 for any body such as that shown in Fig. 3/6c, the
resultant, if any, must be a force R through A. In addition, if ΣMB � 0,
the resultant, if one still exists, must pass through B as shown in Fig.
3/6d. Such a force cannot exist, however, if ΣMC � 0, where C is not

ΣFx � 0   ΣMA � 0   ΣMB � 0
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Figure 3/5
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collinear with A and B. Thus, we may write the equations of equilib-
rium as

where A, B, and C are any three points not on the same straight line.
When equilibrium equations are written which are not indepen-

dent, redundant information is obtained, and a correct solution of the
equations will yield 0 � 0. For example, for a general problem in two di-
mensions with three unknowns, three moment equations written about
three points which lie on the same straight line are not independent.
Such equations will contain duplicated information, and solution of two
of them can at best determine two of the unknowns, with the third
equation merely verifying the identity 0 � 0.

Constraints and Statical Determinacy
The equilibrium equations developed in this article are both neces-

sary and sufficient conditions to establish the equilibrium of a body.
However, they do not necessarily provide all the information required to
calculate all the unknown forces which may act on a body in equilib-
rium. Whether the equations are adequate to determine all the un-
knowns depends on the characteristics of the constraints against
possible movement of the body provided by its supports. By constraint
we mean the restriction of movement.

In Example 4 of Fig. 3/1 the roller, ball, and rocker provide con-
straint normal to the surface of contact, but none tangent to the sur-
face. Thus, a tangential force cannot be supported. For the collar and
slider of Example 5, constraint exists only normal to the guide. In Ex-
ample 6 the fixed-pin connection provides constraint in both directions,
but offers no resistance to rotation about the pin unless the pin is not
free to turn. The fixed support of Example 7, however, offers constraint
against rotation as well as lateral movement.

If the rocker which supports the truss of Example 1 in Fig. 3/2 were
replaced by a pin joint, as at A, there would be one additional constraint
beyond those required to support an equilibrium configuration with no
freedom of movement. The three scalar conditions of equilibrium, Eqs.
3/2, would not provide sufficient information to determine all four un-
knowns, since Ax and Bx could not be solved for separately; only their
sum could be determined. These two components of force would be de-
pendent on the deformation of the members of the truss as influenced
by their corresponding stiffness properties. The horizontal reactions Ax

and Bx would also depend on any initial deformation required to fit the
dimensions of the structure to those of the foundation between A and B.
Thus, we cannot determine Ax and Bx by a rigid-body analysis.

Again referring to Fig. 3/2, we see that if the pin B in Example 3
were not free to turn, the support could transmit a couple to the beam
through the pin. Therefore, there would be four unknown supporting re-
actions acting on the beam—namely, the force at A, the two components
of force at B, and the couple at B. Consequently the three independent

ΣMA � 0   ΣMB � 0   ΣMC � 0
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scalar equations of equilibrium would not provide enough information to
compute all four unknowns.

A rigid body, or rigid combination of elements treated as a single
body, which possesses more external supports or constraints than are
necessary to maintain an equilibrium position is called statically inde-
terminate. Supports which can be removed without destroying the equi-
librium condition of the body are said to be redundant. The number of
redundant supporting elements present corresponds to the degree of sta-
tical indeterminacy and equals the total number of unknown external
forces, minus the number of available independent equations of equilib-
rium. On the other hand, bodies which are supported by the minimum
number of constraints necessary to ensure an equilibrium configuration
are called statically determinate, and for such bodies the equilibrium
equations are sufficient to determine the unknown external forces.

The problems on equilibrium in this article and throughout Vol. 1
Statics are generally restricted to statically determinate bodies where
the constraints are just sufficient to ensure a stable equilibrium configu-
ration and where the unknown supporting forces can be completely de-
termined by the available independent equations of equilibrium.

We must be aware of the nature of the constraints before we attempt
to solve an equilibrium problem. A body can be recognized as statically
indeterminate when there are more unknown external reactions than
there are available independent equilibrium equations for the force sys-
tem involved. It is always well to count the number of unknown variables
on a given body and to be certain that an equal number of independent
equations can be written; otherwise, effort might be wasted in attempt-
ing an impossible solution with the aid of the equilibrium equations only.
The unknown variables may be forces, couples, distances, or angles.

Adequacy of Constraints
In discussing the relationship between constraints and equilibrium,

we should look further at the question of the adequacy of constraints.
The existence of three constraints for a two-dimensional problem does
not always guarantee a stable equilibrium configuration. Figure 3/7
shows four different types of constraints. In part a of the figure, point A
of the rigid body is fixed by the two links and cannot move, and the third
link prevents any rotation about A. Thus, this body is completely fixed
with three adequate (proper) constraints.

In part b of the figure, the third link is positioned so that the force
transmitted by it passes through point A where the other two constraint
forces act. Thus, this configuration of constraints can offer no initial re-
sistance to rotation about A, which would occur when external loads
were applied to the body. We conclude, therefore, that this body is in-
completely fixed under partial constraints.

The configuration in part c of the figure gives us a similar condition
of incomplete fixity because the three parallel links could offer no initial
resistance to a small vertical movement of the body as a result of exter-
nal loads applied to it in this direction. The constraints in these two ex-
amples are often termed improper.
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Figure 3/7
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In part d of Fig. 3/7 we have a condition of complete fixity, with link
4 acting as a fourth constraint which is unnecessary to maintain a fixed
position. Link 4, then, is a redundant constraint, and the body is stati-
cally indeterminate.

As in the four examples of Fig. 3/7, it is generally possible by direct
observation to conclude whether the constraints on a body in two-
dimensional equilibrium are adequate (proper), partial (improper), or
redundant. As indicated previously, the vast majority of problems in this
book are statically determinate with adequate (proper) constraints.
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Approach to Solving Problems
The sample problems at the end of this article illustrate the application
of free-body diagrams and the equations of equilibrium to typical statics
problems. These solutions should be studied thoroughly. In the problem
work of this chapter and throughout mechanics, it is important to de-
velop a logical and systematic approach which includes the following
steps:

1. Identify clearly the quantities which are known and unknown.

2. Make an unambiguous choice of the body (or system of connected
bodies treated as a single body) to be isolated and draw its complete
free-body diagram, labeling all external known and unknown but
identifiable forces and couples which act on it.

3. Choose a convenient set of reference axes, always using right-
handed axes when vector cross products are employed. Choose mo-
ment centers with a view to simplifying the calculations. Generally
the best choice is one through which as many unknown forces pass
as possible. Simultaneous solutions of equilibrium equations are
frequently necessary, but can be minimized or avoided by a careful
choice of reference axes and moment centers.

4. Identify and state the applicable force and moment principles or
equations which govern the equilibrium conditions of the problem.
In the following sample problems these relations are shown in
brackets and precede each major calculation.

5. Match the number of independent equations with the number of
unknowns in each problem.

6. Carry out the solution and check the results. In many problems en-
gineering judgment can be developed by first making a reasonable
guess or estimate of the result prior to the calculation and then
comparing the estimate with the calculated value.

KEY CONCEPTS



SAMPLE PROBLEM 3/1

Determine the magnitudes of the forces C and T, which, along with the
other three forces shown, act on the bridge-truss joint.

Solution. The given sketch constitutes the free-body diagram of the isolated
section of the joint in question and shows the five forces which are in equilibrium.

Solution 1 (scalar algebra). For the x-y axes as shown we have

(a)

(b)

Simultaneous solution of Eqs. (a) and (b) produces

Ans.

Solution II (scalar algebra). To avoid a simultaneous solution, we may use axes
x�-y� with the first summation in the y�-direction to eliminate reference to T. Thus,

Ans.

Ans.

Solution III (vector algebra). With unit vectors i and j in the x- and y-direc-
tions, the zero summation of forces for equilibrium yields the vector equation

Equating the coefficients of the i- and j-terms to zero gives

which are the same, of course, as Eqs. (a) and (b), which we solved above.

Solution IV (geometric). The polygon representing the zero vector sum of
the five forces is shown. Equations (a) and (b) are seen immediately to give the
projections of the vectors onto the x- and y-directions. Similarly, projections onto
the x�- and y�-directions give the alternative equations in Solution II.

A graphical solution is easily obtained. The known vectors are laid off head-
to-tail to some convenient scale, and the directions of T and C are then drawn to
close the polygon. The resulting intersection at point P completes the solution,
thus enabling us to measure the magnitudes of T and C directly from the draw-
ing to whatever degree of accuracy we incorporate in the construction.

T sin 40� � 3 � C cos 20� � 0

8 � T cos 40� � C sin 20� � 16 � 0

� (C cos 20�)j � 16i � 0

8i � (T cos 40�)i � (T sin 40�)j � 3j � (C sin 20�)i[ΣF � 0]

T � 9.09 kN

T � 8 cos 40� � 16 cos 40� � 3 sin 40� � 3.03 sin 20� � 0[ΣFx� � 0]

C � 3.03 kN

�C cos 20� � 3 cos 40� � 8 sin 40� � 16 sin 40� � 0[ΣFy� � 0]

T � 9.09 kN   C � 3.03 kN

0.643T � 0.940C � 3

T sin 40� � C cos 20� � 3 � 0 [ΣFy � 0]

0.766T � 0.342C � 8

8 � T cos 40� � C sin 20� � 16 � 0 [ΣFx � 0]
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� The known vectors may be added in
any order desired, but they must be
added before the unknown vectors.

Helpful Hints

� Since this is a problem of concur-
rent forces, no moment equation is
necessary.

� The selection of reference axes to fa-
cilitate computation is always an im-
portant consideration. Alternatively
in this example we could take a set
of axes along and normal to the di-
rection of C and employ a force sum-
mation normal to C to eliminate it.

�

�

�



SAMPLE PROBLEM 3/2

Calculate the tension T in the cable which supports the 1000-lb load with
the pulley arrangement shown. Each pulley is free to rotate about its bearing,
and the weights of all parts are small compared with the load. Find the magni-
tude of the total force on the bearing of pulley C.

Solution. The free-body diagram of each pulley is drawn in its relative posi-
tion to the others. We begin with pulley A, which includes the only known force.
With the unspecified pulley radius designated by r, the equilibrium of moments
about its center O and the equilibrium of forces in the vertical direction require

From the example of pulley A we may write the equilibrium of forces on pulley B
by inspection as

For pulley C the angle � � 30� in no way affects the moment of T about the cen-
ter of the pulley, so that moment equilibrium requires

Ans.

Equilibrium of the pulley in the x- and y-directions requires

Ans.

SAMPLE PROBLEM 3/3

The uniform 100-kg I-beam is supported initially by its end rollers on the
horizontal surface at A and B. By means of the cable at C it is desired to elevate
end B to a position 3 m above end A. Determine the required tension P, the reac-
tion at A, and the angle � made by the beam with the horizontal in the elevated
position.

Solution. In constructing the free-body diagram, we note that the reaction on
the roller at A and the weight are vertical forces. Consequently, in the absence of
other horizontal forces, P must also be vertical. From Sample Problem 3/2 we
see immediately that the tension P in the cable equals the tension P applied to
the beam at C.

Moment equilibrium about A eliminates force R and gives

Ans.

Equilibrium of vertical forces requires

Ans.

The angle � depends only on the specified geometry and is

Ans.sin � � 3/8   � � 22.0�

654 � R � 981 � 0   R � 327 N[ΣFy � 0]

P � 654 NP(6 cos �) � 981(4 cos �) � 0[ΣMA � 0]

[F � �Fx 

2 � Fy 

2]   F � �(217)2 � (125)2 � 250 lb

Fy � 125 lbFy � 250 sin 30� � 250 � 0[ΣFy � 0]

Fx � 217 lb250 cos 30� � Fx � 0[ΣFx � 0]

T � T3   or   T � 250 lb

T3 � T4 � T2/2 � 250 lb

 2T1 � 1000   T1 � T2 � 500 lbT1 � T2 � 1000 � 0[ΣFy � 0]

T1 � T2T1r � T2r � 0[ΣMO � 0]
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Helpful Hint

� Clearly the equilibrium of this paral-
lel force system is independent of �.

Helpful Hint

� Clearly the radius r does not influence
the results. Once we have analyzed a
simple pulley, the results should be
perfectly clear by inspection.

�

�



SAMPLE PROBLEM 3/4

Determine the magnitude T of the tension in the supporting cable and the
magnitude of the force on the pin at A for the jib crane shown. The beam AB is a
standard 0.5-m I-beam with a mass of 95 kg per meter of length.

Algebraic solution. The system is symmetrical about the vertical x-y plane
through the center of the beam, so the problem may be analyzed as the equilib-
rium of a coplanar force system. The free-body diagram of the beam is shown in
the figure with the pin reaction at A represented in terms of its two rectangular
components. The weight of the beam is 95(10�3)(5)9.81 � 4.66 kN and acts
through its center. Note that there are three unknowns Ax, Ay, and T, which may
be found from the three equations of equilibrium. We begin with a moment
equation about A, which eliminates two of the three unknowns from the equa-
tion. In applying the moment equation about A, it is simpler to consider the mo-
ments of the x- and y-components of T than it is to compute the perpendicular
distance from T to A. Hence, with the counterclockwise sense as positive we
write

from which Ans.

Equating the sums of forces in the x- and y-directions to zero gives

Ans.

Graphical solution. The principle that three forces in equilibrium must be
concurrent is utilized for a graphical solution by combining the two known verti-
cal forces of 4.66 and 10 kN into a single 14.66-kN force, located as shown on the
modified free-body diagram of the beam in the lower figure. The position of this
resultant load may easily be determined graphically or algebraically. The inter-
section of the 14.66-kN force with the line of action of the unknown tension T
defines the point of concurrency O through which the pin reaction A must pass.
The unknown magnitudes of T and A may now be found by adding the forces
head-to-tail to form the  closed equilibrium polygon of forces, thus satisfying
their zero vector sum. After the known vertical load is laid off to a convenient
scale, as shown in the lower part of the figure, a line representing the given di-
rection of the tension T is drawn through the tip of the 14.66-kN vector. Like-
wise a line representing the direction of the pin reaction A, determined from the
concurrency established with the free-body diagram, is drawn through the tail of
the 14.66-kN vector. The intersection of the lines representing vectors T and A
establishes the magnitudes T and A necessary to make the vector sum of the
forces equal to zero. These magnitudes are scaled from the diagram. The x- and
y-components of A may be constructed on the force polygon if desired.

[A � �Ax 

2 � Ay 

2]  A � �(17.77)2 � (6.37)2 � 18.88 kN

Ay � 19.61 sin 25� � 4.66 � 10 � 0   Ay � 6.37 kN[ΣFy � 0]

Ax � 17.77 kNAx � 19.61 cos 25� � 0[ΣFx � 0]

T � 19.61 kN

� 10(5 � 1.5 � 0.12) � 4.66(2.5 � 0.12) � 0
(T cos 25�)0.25 � (T sin 25�)(5 � 0.12)[ΣMA � 0]
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Free-body diagram

Helpful Hints

� The justification for this step is
Varignon’s theorem, explained in
Art. 2/4. Be prepared to take full ad-
vantage of this principle frequently.

� The calculation of moments in two-
dimensional problems is generally
handled more simply by scalar alge-
bra than by the vector cross product 
r F. In three dimensions, as we will
see later, the reverse is often the case.

� The direction of the force at A could
be easily calculated if desired. How-
ever, in designing the pin A or in
checking its strength, it is only the
magnitude of the force that matters.

�

�

�

�


	CHAPTER 3 EQUILIBRIUM
	3/1 Introduction
	SECTION A EQUILIBRIUM IN TWO DIMENSIONS
	3/2 System Isolation and the Free-Body Diagram
	3/3 Equilibrium Conditions



