

Al-Mustaqbal University

College of Sciences
Intelligent Medical Systems Department

كلية العسلوم قسم الامن السيبراني

LECTURE: (2)

Subject: FUNCTIONS

Level: First

Lecturer: Dr. Mustafa Talal

Chapter Two

Function

Numbers:

$$1 - N = set of natural numbers$$

 $N = \{1, 2, 3, 4,\}$
 $2 - I = set of integers$
 $= \{...., -3, -2, -1, 0, 1, 2, 3, ...\}$
Note that: NCI

3 - A = set of rational numbers

$$= \left(\chi : \chi = \frac{\rho}{q} \rho \text{ and } q \text{ are int } egers \ q \neq 03 \right]$$

Ex:
$$\frac{3}{2}$$
, $-\frac{4}{5}$, $\frac{3}{1}$, $\frac{-7}{1}$

Note that: ICA

4 - B = set of irrational numbers= $\{X: X \text{ is not a rational number}\}$ Ex: $\sqrt{2}$, $\sqrt{3}$, $-\sqrt{7}$

> 5 - R: set of real numbers = set of all rational and irrational numbers Note that R = AUB

Note: the set of real numbers is represented by a line called a line of numbers:

(ii) NCR, ICR, ACR, BCR Intervals

The set of values that a variable χ may take on is called the domain of χ . The domains of the variables in many applications of calculus are intervals like those shows below.

open intervals

is the set of all real numbers that lie strictly between two fixed numbers a and b:

In symbols $a\langle \chi \langle bor(q,b) \rangle$

In words

The open interval a b

Closed Intervals contain both endpoints:

In symbols $a \le \chi \le b$ or [a,b]

In words

the closed interval a b

Half – open intervals contain one but not both end points:

In symbols:

in wards

 $a \le \chi \langle b \rangle$ or [a,b] 'the interval a less than or equal To χ less than b $a \leq \chi cb$

 $a \langle \chi \leq b$ or [a,b]

the interval a less than χ less than or equal b

Ex. minu une uomam or

$$1 - Y = \sqrt{1 - X^2}$$

The domain of χ is the closed interval

$$1-\leq \chi \leq 1$$

$$2 - Y = \frac{1}{\sqrt{1 - X^2}}$$

The domain for χ is open interval

 $-1\langle \chi \langle 1 \rangle$ because $\frac{1}{0}$ is not defined

$$\mathbf{B} - \mathbf{y} = \sqrt{\frac{1}{X} - 1}$$

$$\frac{1}{X}-1\geq 0$$
 or $\frac{1}{X}\geq 1$

The domain for χ is the half – open $0 < \chi \le 1$

Ex: the equation

the domain

$$Y = \chi^2$$

$$Y = \sqrt{\chi}$$

$$Y = \frac{1}{\sqrt{4 - X}}$$

$$y = \sqrt{\frac{\chi}{(\chi - 1)}}$$

The domain for χ is $X \le 0UX > 1$

Definition: A function, say f is a relation between the elements of two sets say A and B such that for every $\chi \in A$ there exists one and only one $Y \in B$ with Y = F(X).

The set A which contain the values of χ is called the domain of function F.

The set B which contains the values of Y corresponding to the values of χ is called the range of the function F. χ is called the independer variable of the function F, while Y is called the dependant variable of F.

Note:

1 – Some times the domain is denoted by DF and the range by RF.

2 - Y is called the image of χ .

Example: Let the domain of χ be the set $\{0,1,2,3,4\}$. Assign to each value of χ the number $Y = \chi^2$. The function so defined is the set of pairs, $\{(0,0), (1,1), (2,4), (3,9), (4,16)\}$.

Example: Let the domain of χ be the closed interval

 $-2 \le \chi \le 2$. Assign to each value of χ the number $y = \chi^2$.

The set of order pairs (χ, y) such that $-2 \le \chi \le 2$

And $y = \chi^2$ is a function.

Note: Now can describe function by two things:

1 – the domain of the first variable χ .

2 – the rule or condition that the pairs (χ, y) must satisfy to belong to the function.

Example:

The function that pairs with each value of χ diffrent from 2 the number

$$\frac{\chi}{\chi-2}$$

$$y = f(\chi) = \frac{\chi}{\chi - 2}$$
 $\chi \neq 2$

Note 2: Let $f(\chi)$ and $g(\chi)$ be two function.

$$1 - (f \pm g)(\chi) = f(\chi) \pm g(\chi)$$

2 -
$$(f.g)(\chi) = f(\chi) \cdot g(\chi)$$

3 -
$$(\frac{f}{g})(\chi) = \frac{f(\chi)}{g(\chi)}$$
 if $g(\chi) \neq 0$

Example: Let $f(\chi) = \chi + 2$, $g(\chi) = \sqrt{\chi - 3}$ evaluate

$$f \pm g$$
, $f.g$ and $\frac{f}{g}$

So:
$$(f \pm g)(\chi) = f(\chi) \pm g(\chi) = \chi + 2 \pm (\sqrt{\chi - 3})$$

$$(f.g)\ (\chi)=f(\chi)\ .\ g(\chi)=(\chi+2)\ (\sqrt{\chi-3}$$

$$\left(\frac{f}{g}\right)(\chi) = \frac{f(\chi)}{g(\chi)} = \frac{\chi + 2}{\sqrt{\chi - 3}} \qquad \{X : X \mid 3\}$$

Composition of Function:

Let $f(\chi)$ and $g(\chi)$ be two functions

We define: $(fog)(\chi) = f(g(\chi))$

Example: Let $f(\chi) = \chi^2$, $g(\chi) = \chi - 7$ evaluate fog and gof

So:
$$(f \circ g)(\chi) = f[g(x)] = f(\chi - 7) = (\chi - 7)^2$$

$$(gof)(\chi) = g[f(\chi)] = g(\chi^2) = \chi^2 - 7$$

$$\therefore fog \neq gof$$

Inverse Function

Given a function F with domain A and the range B.

The inverse function of f written f, is a function with domain B and range A such that for every $y \in B$ there exists only $\chi \in A$ with $\chi = f^{-1}(y)$.

Note that: $f^{-1} \neq \frac{1}{f}$

Polynomials: A polynomial of degree n with independent variable, written $f_n(x)$ or simply $f(\chi)$ is an expression of the form:

$$fn(\chi) = q_o + a_1 \chi + a_2 X^2 + \dots + an X^n \dots (*)$$

Where $q_0, a1, \dots, an$ are constant (numbers).

The degree of polynomial in equation (*) is n (the highest power of equation)

Example:

(i) $f(\chi) = 5X$ polynomial of degree one.

$$2 - \cos \varphi = \frac{b}{c}$$

$$3 - \tan \varphi = \frac{a}{b}$$

$$4 - \cot \alpha \varphi = \frac{1}{\tan \varphi} = \frac{b}{a}$$

$$5 - \sec \quad \varphi = \frac{1}{\cos \varphi} = \frac{c}{b}$$

6- CSC
$$\varphi = \frac{1}{\sin \varphi} = \frac{c}{a}$$

Relation ships between degrees and radians

$$\varphi$$
 In radius = $\frac{s}{r}$

$$360^{\circ} = \frac{2\pi r}{r}$$
$$= 2\pi radius$$

$$1^{\circ} = \frac{\pi}{180}$$
 radius = 0.0174 radian

1 radian =
$$\frac{180}{\pi}$$
 deg $ree = 57.29578^{\circ}$

$$\left(\frac{360}{2\pi}\right) = 1 radian = 57^{\circ}.18$$

$$180^{\circ} = \pi \text{ radians} = 3.14159 - \text{radians}$$

$$1^{\circ} = \frac{2\pi}{360} = \frac{\pi}{180} \approx 0.001754 \text{ radians}$$

$$\tan \chi = \frac{\sin \chi}{\cos \chi}$$

$$Cot\chi = \frac{Cos\chi}{Sin\chi} = \frac{1}{\tan\chi}$$

