

The Iron-Carbon Phase Equilibrium Diagram

Pure iron is a relatively <u>soft</u>, <u>ductile low strength metal</u> with <u>few practical engineering applications</u>. <u>The</u> <u>addition of Carbon to pure iron increases strength and hardenability to useful levels</u>. <u>However it decreases</u> <u>ductility</u>. The addition of Carbon influences the allotropic changes discussed previously. Since mechanical behavior is directly related to the phases present, it is important to study these phases and how they are influenced by temperature. A study of the Iron-Carbon phase diagram is used for this purpose. An Iron-Carbon phase diagram showing the phases present in any alloy containing up to **6%** Carbon is shown in figure 1.

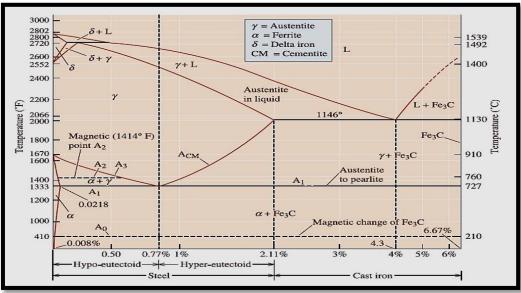


Figure 1. Iron-Carbon Equilibrium Diagram.

This phase diagram tells us the various phases a particular alloy of Iron and Carbon will go through when allowed cooling down to room temperature. In general iron carbon alloys up to 2% are known as steels while from 2% upwards the alloys are identified as cast iron. Our study mainly deals with the alloys up to 2% carbon i.e. the steels part of the diagram, so we will move on to look at this section of the diagram.

The Steel Section of the Iron - Carbon Diagram

Shown here is the steel part of the iron carbon diagram containing up to 2% Carbon. At the eutectoid point 0.83% Carbon, Austenite which is in a solid solution changes directly into a solid known as <u>Pearlite</u> which is a <u>layered structure consisting of layers of Ferrite and Cementite</u>.

Plain Carbon Steel	% of Carbon		
Dead Mild Steel(Low Carbon Steel)	0.05 - 0.15 % carbon		
Mild Steel	0.10 - 0.30 % carbon		
Medium Carbon Steel	0.30 – 0.50 % carbon		
High Carbon Steel	0.50 - 0.90 % carbon		
High carbon Steel (Tool Steel)	0.90 - 1.50 % carbon		

	Mechani	cal Properties	and Applica	tion of Carbon	ı Steel	
Type of steel	% carbon	BHN No.	Tensile Strength	Yield Strength	% elongation	% Reduction in area
Dead mild Steel	0.05-0.15	100-110	390	260	40	60
Uses: Chains, stampin drawing and pressing.		, seamwelded	pipe, tin plate	s, automobile t	oody. Steel and m	aterial subject to
Mild Steel	0.10-0.30 120-150		420-555	355-480	36-21	66-55
Uses: Structural steel	s, universal bear	ns, screw, droj	p forging,case	hardening steel	, gears free cutting	g steel, shaft.
Medium Steel	0.30-0.50	150-350	700-770	550-580	18-20	51-53
Uses: Conecting rods,	shafting, axles,	crankhooks, fo	orging, Gears,	Dies, Rotors, T	yres, Wheels.	63 63
High carbon	0.50-0.90	350-600	1200-665	750-645	10-12	35-33
Uses: Loco Tyres, ra Springs, Cable wire, I				Screw Drivers,	Band Saw, Ham	mers, Laminated
Tool Steel	0.90-1.10	550-600	580	415	13	26
Uses:Axes kinves, dri	ll, tapes, screws	ring dies.	20		377	
High Carbon	1.10-1.50	600-750	500	375	13	20
Uses: Ball Bearing, fi	les, broaches, bo	oring and finish	ning tools, mac	hine parts when	re resistance to we	re is essential.

In order to fully understand the changes that occur in these different alloys of steels we will look at individual microstructures of common steel alloys. Here we see the various microstructures that exist in phases up to 2% Carbon content.

<u>Phases in Fe-Fe₃C Phase Diagram</u>

A. α-Ferrite - Solid Solution of C in BCC Fe.

(1) Stable form of iron at room temperature, (2) The maximum solubility of C is (0.022wt%), (3) Transforms to FCC γ - austenite at $(912^{\circ}C)$.

B. γ- Austenite - Solid Solution of C in FCC Fe.

(1) The maximum solubility of C is (2.14 wt %), (2) Transforms to BCC δ - ferrite at (1395°C), (3) Is not stable below the eutectic temperature (727°C) unless cooled rapidly.

C. δ-Ferrite - Solid Solution of C in BCC Fe.

(1) The same structure as α - ferrite, (2) Stable only at high T, above (1394°C), (3) Melts at (1538°C).

D. Fe₃C (Iron Carbide or Cementite).

This intermetallic compound is **metastable**, it remains as a compound indefinitely at room **T**, but decomposes (very slowly, within several years) into α -Fe and C (graphite) at (**650 - 700**)°C.

E. Fe-C Liquid Solution.

A few comments on Fe-Fe₃C system C is an interstitial impurity in Fe. It forms a solid solution with α , γ , δ phases of iron.

Maximum solubility in BCC α -ferrite is limited (max. 0.022 wt% at 727°C) - BCC has relatively small interstitial positions.

Maximum solubility in FCC austenite is (2.14 wt%) at (1147°C) FCC has larger interstitial positions. Mechanical Properties: Cementite is <u>very hard</u> and <u>brittle</u> - can strengthen steels. Mechanical properties also depend on the microstructure, that is, how ferrite and cementite are mixed.

Magnetic Properties: α -ferrite is magnetic below (**768°C**), austenite (γ) is non-magnetic.

Classification of Ferrous Alloys

1. Iron: less than 0.008 wt % C in α -ferrite at room T.

2. Steels: (0.008 - 2.14) wt % C (usually < 1 wt %) α-ferrite + Fe₃C at room T.

3. Cast Iron: (2.14 - 6.7) wt % (usually < 4.5 wt %).

Development of Microstructure in Iron-Carbon Alloys

Microstructure depends on <u>composition</u> (carbon content) and <u>heat treatment</u>. In the discussion below we consider slow cooling in which equilibrium is maintained.

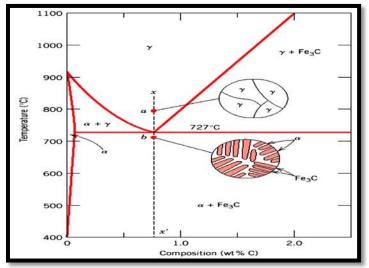
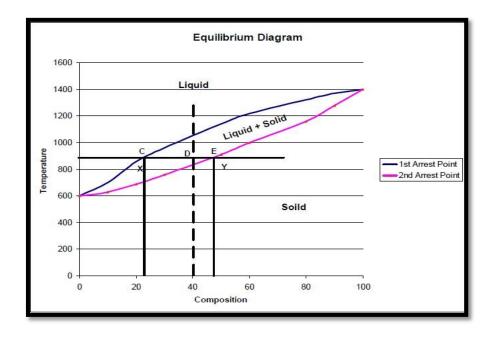


Figure 2. Microstructure depends on carbon content.

EXAMPLE.1

Metal (A) melts at (1400°C), Metal (B) melts at (600°C). Thermal arrest data is obtained from cooling curves for the alloy of (AB) is shown below.

%A	0	10	20	30	50	60	80	90	100
1 st Arrest Point	600	700	860	960	1140	1220	1320	1370	1400
2 nd Arrest Point	600	630	690	760	910	1000	1160	1280	1400



- 1. Plot and label the equilibrium diagram.
- 2. For an alloy containing (40%) A and (60%) B state:
 - (a) Solidification beginning temperature.
 - (b) Solidification ending temperature.
 - (c) Composition of phases at (900°C).
 - (d) The ratio of phases.

SOLUTION

1.

2.

- (a) Solidification beginning at (1060°C).
- (b) Solidification ending at (840°C).

(c) Composition of phases at $(900^{\circ}C) =$ Liquid Point C = 25% A 75% B.

Solid point E = 45% A

and 65% B (d) Ratio is law of Lever rule.

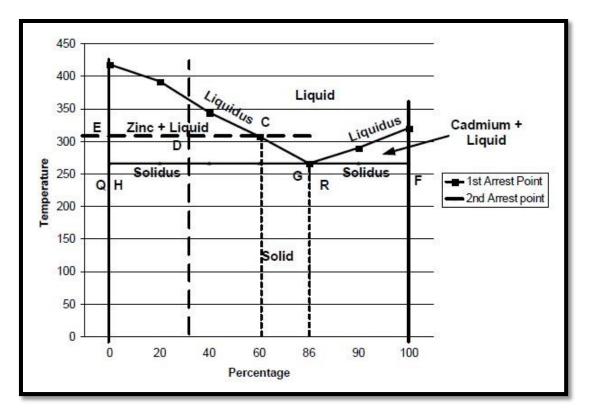
Solid (S)% =
$$[(40-25) / (48-25)] \times 100$$

= 65.217 %
Liquid (L)% = $[(48-40) / (48-25)] \times 100$
= 34.783 %

EXAMPLE.2

From the cooling curves of the various alloys of Zinc and Cadmium the following data were obtained,

%A	0	20	40	60	86	90	100
1 st Arrest Point	419	392	345	308	266	290	321



2 nd Arrest 266 266 266 266
--

- **1.** Draw and label the equilibrium diagram.
- With reference to the cooling curve, describe the cooling of an alloy containing 30% cadmium: (a) Composition of the alloy at (320°C).
 - (b) Ratio of liquid to solid phase at $(320^{\circ}C)$.
 - (c) The proportion of eutectic in the final structure.

SOLUTION

