

Al-Mustaqbal University

College of Sciences
Intelligent Medical Systems Department

كلية العسلوم قسام التقنيات الاحيائية

LECTURE: (3)

Subject: Measures of Position

Level: First

Lecturer: Dr. Mustafa Talal

Measures of Position

In addition to measures of central tendency and measures of variation, there are measures of position or location. These measures include:

- 1-standard scores.
- 2- percentiles.
- 3- deciles, and quartiles.

z score or **standard score**: it represents the number of standard deviations that a data value falls above or below the mean.

For samples, the formula is: z = (x - x -)/sFor populations, the formula is: $z = (x - \mu)/\sigma$

Ex: A student scored 65 on a calculus test that had a mean of 50 and a standard deviation of 10; she scored 30 on a history test with a mean of 25 and a standard deviation of 5. Compare her relative positions on the two tests.

Sol:

$$z_1 = (x-x^-)/s = 65-50/10 = 1.5$$

 $z_2 = (x-x^-)/s = 30-25/5 = 1$

Since the z score for calculus is larger, her relative position in the calculus class is higher than her relative position in the history class.

*** Note that if the z score is positive, the score is above the mean. If the z score is 0, the score is the same as the mean. And if the z score is negative, the score is below the mean.

As the name implies, quartiles divide the data set into four equal parts. Therefore, the first quartile, Q_1 , is the 25^{th} percentile, the second quartile, Q_2 is the 50^{th} percentile (or the median), and the third quartile, Q_3 , is the 75^{th} percentile. The difference between the third and first quartiles is interred quartile range (IQR).

$$IQR = Q3 - Q1$$

25% of data	25% of data	25% of data	25% of data

Min. value Q1 Q2 Q3 Max. value median

Ex: The following are the ages of nine employees of an insurance company

- a- Find the values of three quartiles
- When does the age 28 fall in relation to the ages of these employees.
- C- Find the inter quartile range (IQR).

Sol:

Arrange the data in increasing order:

- Q_2 is the median of all values $\rightarrow Q_2 = 37$
- Q_1 is the median of values (24, 28, 33, 33) $\rightarrow Q_1 = (28 + 33)/2 = 30.5$.
- Q_3 is the median of values (39, 47, 51, 59) $\rightarrow Q_3 = (47 + 51)/2 = 49$.
- d- The age 28 fall in the first 25% of the ages.
- The inter quartile range (IQR) = Q3 Q1 = 49 30.5 = 18.5 years.

Percentiles:

divide the data set into 100 equal groups. Each data set has 99 percentiles, data must be ranked in increasing order to compute percentiles. The k^{th} percentile is denoted by P_k , where k is an integer range from (1-99). For example, the 25^{th} percentile which is denoted by P_{25} , is defined to be that numerical value such that at most 25% of the values are smaller than it and at most 75% are larger than it in an ordered data set.

For ungrouped data,

The percentile corresponding to a given value (x) is computed by using the formula:

Percentile =
$$\frac{No.of\ values\ below\ x+0.5}{Total\ No.of\ values} * 100$$

Ex. A teacher gives a 20-point test to 10 students. Find the percentile rank of a score of 12. Scores: 18, 15, 12, 6, 8, 2, 3, 5, 20, 10.

Sol:

Ordered set: 2, 3, 5, 6, 8, 10, 12, 15, 18, 20.

Percentile =
$$\frac{No.of\ values\ below\ x+0.5}{Total\ No.of\ values} * 100$$

..... (H.W)

To Finding the value Corresponding to a Given Percentile:

- Let p be the percentile and n the sample size.
- Arrange the data in order.
- Compute $c = (n \times p)/100$.
- If c is not a whole number, round up to the next whole number. If c is a whole number, use the value halfway between c and c + 1.
- \blacksquare The value of c is the position value of the required percentile.

Ex: For the following data set: 2, 3, 5, 6, 8, 10, 12, 15, 18, 20. Find the values of the 25th and 80th percentile.

Sol:

a.
$$n = 10$$
, $p = 25$ $c = (10 \times 25)/100 = 2.5$.

Hence round up to c = 3. Thus, the value of the 25th percentile is the value x = 5.

b.
$$n = 10$$
, $p = 80$ $c = (10 \times 80)/100 = 8$.

Thus the value of the 80th percentile is the average of the 8th and 9th values.

$$x = (15 + 18)/2 = 16.5.$$

QUESTIONS:

- 1- Calculate the range for the following data set: 12,5,11,9,7,4,8
- 2- Mathematical law of sample variance is
- 3- The standard deviation divided by the mean is called
 - a- Range b- standard score c- Coefficient of Variation
- 4- Mathematical law of Standard deviation is