Counter

A counter is a device which can count any particular event on the basis of how many times the particular event(s) is occurred.

Asynchronous Counters:

The term asynchronous refers to events that do not have a fixed time relationship with each other and, generally, do not occur at the same time. An asynchronous counter is one in which the flip-flops (FF) within the counter do not change states at exactly the same time because they do not have a common clock pulse.

*T-Flip Flop is use to divide the input frequency of digital signal by 2 .

2-Bit Binary Asynchronous Up Counter:

2-Bit Binary Asynchronous Down Counter:

Ex1: Design 3-bit binary asynchronous down counter and draw timing diagram.

Q2

Ex2: Design 3-bit binary asynchronous up counter and draw timing diagram.

Q2

Counter Modification: When the preset input is activated, the flip-flop will be set ($\mathrm{Q}=1$, not- $\mathrm{Q}=0$) regardless of any of the synchronous inputs or the clock. When the clear input is activated, the flip-flop will be reset $(\mathrm{Q}=0$, not- $\mathrm{Q}=1)$, regardless of any of the synchronous inputs or the clock.

Preset and clear inputs find use when multiple flip-flops are ganged together to perform a function on a multi-bit binary word, and a single line is needed to set or reset them all at once. Asynchronous inputs can be engineered to be active-high or active-low. If they're active-low, there will be an inverting bubble at that input lead on the block symbol, just like the negative edge-trigger clock inputs.

Sometimes the designations "PRE" and "CLR" will be shown with inversion bars above them, to further denote the negative logic of these inputs:

Ex3: Design "Asynchronous" BCD up counter, count from (0 to 9)

Q3	Q2	Q1	Q0
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1

Ex4: Design "Asynchronous" up counter, to count from (0 to 5) and draw timing digram.

Q2	Q1	Q0
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1

Ex5: Design "Asynchronous" BCD down counter, count from (9 to 0)

Q3	Q2	Q1	Q0
1	0	0	1
1	0	0	0
0	1	1	1
0	1	1	0
0	1	0	1
0	1	0	0
0	0	1	1
0	0	1	0
0	0	0	1
0	0	0	0

6. XOR (Exclusive OR)gate:

Truth table:

INPUTS		OUTPUT
\mathbf{A}	\mathbf{B}	Y
$\mathbf{0}$	$\mathbf{0}$	0
$\mathbf{0}$	$\mathbf{1}$	1
$\mathbf{1}$	$\mathbf{0}$	1
$\mathbf{1}$	$\mathbf{1}$	0

Boolean expression:
$\mathbf{Y}=\mathbf{A}^{\prime} \mathbf{B}+\mathbf{A B}{ }^{\prime}=\mathbf{A} \oplus \mathbf{B}$
7. XNOR(Exclusive NOR)gate:

Truth table:

INPUTS		OUTPUT
\mathbf{A}	\mathbf{B}	\mathbf{Y}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

