Counter

A counter is a device which can count any particular event on the basis of how many times the particular event(s) is occurred.

Asynchronous Counters:

The term asynchronous refers to events that do not have a fixed time relationship with each other and, generally, do not occur at the same time. An asynchronous counter is one in which the flip-flops (FF) within the counter do not change states at exactly the same time because they do not have a common clock pulse.

*T-Flip Flop is use to divide the input frequency of digital signal by 2.

<u>2-Bit Binary Asynchronous Up Counter:</u>

<u>2-Bit Binary Asynchronous Down Counter:</u>

Ex1: Design 3-bit binary asynchronous down counter and draw timing diagram.

<u>Counter Modification</u>: When the **preset** input is activated, the flip-flop will be set (Q=1, not-Q=0) regardless of any of the synchronous inputs or the clock. When the clear input is activated, the flip-flop will be reset (Q=0, not-Q=1), regardless of any of the synchronous inputs or the clock.

Preset and clear inputs find use when multiple flip-flops are ganged together to perform a function on a multi-bit binary word, and a single line is needed to set or reset them all at once. Asynchronous inputs can be engineered to be active-high or active-low. If they're active-low, there will be an inverting bubble at that input lead on the block symbol, just like the negative edge-trigger clock inputs. Sometimes the designations "PRE" and "CLR" will be shown with inversion bars above them, to further denote the negative logic of these inputs:

Ex3: Design "Asynchronous" BCD up counter, count from (0 to 9)

Ex4: Design "Asynchronous" up counter, to count from (0 to 5) and draw timing digram.

Q2	Q1	Q0		
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1	110	
			, i i i i i i i i i i i i i i i i i i i	
				00

Ex5: Design "Asynchronous" BCD down counter, count from (9 to 0)

6. XOR (Exclusive OR)gate:

Truth	table:
INPUTS	OUTPUT
A B	Y
0 0	0
0 1	1
1 0	1
1 1	0

7. XNOR(Exclusive NOR)gate:

Truth table:

INPUTS	OUTPUT
A B	Y
0 0	1
0 1	0
1 0	0
1 1	1

Boolean expression: Y=A'B'+AB= (A⊕B)'