2. Subtraction:

a. subtraction in decimal system:

First: normal subtraction:
$\mathrm{n} 1>\mathrm{n} 2$, result is positive
n1 47
29
n2 $\quad-29$
-47
$+18$
-18

Second: Subtraction using 9's complement:

$-18 \longrightarrow$ and the result in 9's complement

Third: subtraction in 10's complement

$$
\begin{array}{rr}
\mathrm{n} 1 & 47 \\
\mathrm{n} 2 & +71
\end{array}
$$

$118 \longrightarrow$ means that the result is +ve .
$+18$

29

$+53 \longrightarrow(10$'s complement of (47))
$82 \longrightarrow$ means that the result is -ve.
$-18 \longrightarrow$ (10's complement)

b. subtraction in Binary system:

First: normal subtraction:

The four basic rules for subtracting bits are as follows:

$$
\begin{aligned}
0-0 & =0 \\
1-1 & =0 \\
1-0 & =1 \\
10-1 & =1 \quad 0-1 \text { with a borrow of } 1
\end{aligned}
$$

When subtracting numbers, you sometimes have to borrow from the next column to the left. A borrow is required in binary only when you try to subtract a 1 from a 0 . In this case, when a 1 is borrowed from the next column to the left, a 10 is created in the column being subtracted, and the last of the four basic rules just listed must be applied. Examples 2-8 and 2-9 illustrate binary subtraction; the equivalent decimal subtractions are also shown.

EXAMPLE 2-8

Perform the following binary subtractions:
(a) $11-01$
(b) $11-10$

Solution

(a) 11

3
(b)

$\begin{array}{r}3 \\ -2 \\ \hline 1\end{array}$

No borrows were required in this example. The binary number 01 is the same as 1 .

Related Problem

Subtract 100 from 111.

