

Ministry of Higher Education and Scientific Research Al-Mustaqbal University College Department of Chemical Engineering and petroleum Industrials

Mathematics II

$$
2^{\text {nd }} \text { Stage }
$$

Lecturer: Rusul A. Hashim

2023-2024

1. Double integral

The definite integral can be extended to functions of more than one variable. Consider, for example, a function of two variables $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$. The double integral of function $f(x, y)$ is denoted by

$$
\iint \mathrm{F}(\mathrm{x}, \mathrm{y})
$$

Figure 1

Where R is the region of integration in the xy-plane.
The definite integral $\int_{a}^{b} f(x) d x$ of a function of one variable $f(x) \geq 0$ is the area under the curve $f(x)$ from $x=a$ to $x=b$, then the double integral is equal to the volume under the surface $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ and above the xy -plane in the region of integration R (Figure 1).

a- Properties of double integral

If $f(x, y)$ and $g(x, y)$ are continuous on the bounded region R, then the following properties hold.

1. Constant Multiple: $\iint_{R} c f(x, y) d A=c \iint_{R} f(x, y) d A \quad$ (any number c)
2. Sum and Difference:

$$
\iint_{R}(f(x, y) \pm g(x, y)) d A=\iint_{R} f(x, y) d A \pm \iint_{R} g(x, y) d A
$$

3. Domination:
(a) $\iint_{R} f(x, y) d A \geq 0 \quad$ if $\quad f(x, y) \geq 0$ on R
(b) $\iint_{R} f(x, y) d A \geq \iint_{R} g(x, y) d A \quad$ if $\quad f(x, y) \geq g(x, y)$ on R
4. Additivity: $\iint_{R} f(x, y) d A=\iint_{R_{1}} f(x, y) d A+\iint_{R_{2}} f(x, y) d A$
if R is the union of two nonoverlapping regions R_{1} and R_{2}

b- Cartesian form

Double integral of $f(x, y)$ over the region R is denoted by:

$$
\begin{gathered}
\iint_{R} F(x, y) d A=\iint_{R} F(x, y) d x d y=\int_{C}^{d} \int_{x 1}^{x 2} F(x, y) d x d y \\
\iint_{R} F(x, y) d A=\iint_{R} F(x, y) d y d x=\int_{a}^{b} \int_{y 1}^{y 2} F(x, y) d y d x
\end{gathered}
$$

C- Finding Limits of Integration in Cartesian form

\square Using Vertical Cross-Sections \square

When faced with evaluating $\iint()$, integrating first with respect to y and then with respect to x, do the following three steps: 1-Sketch. Sketch the region of integration and label the bounding curves. (Figure 3 a).

2- Find the y-limits of integration. Imagine a vertical line L cutting through R in the direction of increasing y. Mark the y-values where L enters and leaves. These are the y limits of integration and are usually functions of x (instead of constants) (Figure 3 b).

3- Find the x-limits of integration. Choose x-limits that include all the vertical lines through R. The integral shown here (see Figure 3 c) is

$$
\iint_{R} f(x, y) d A=\int_{x=0}^{x=1} \int_{y=1-x}^{y=\sqrt{1-x^{2}}} f(x, y) d y d x
$$

Using Horizontal Cross-Sections \square

To evaluate the same double integral as an iterated integral with the order of integration reversed, use horizontal lines instead of vertical lines in Steps 2 and 3 (see Figure 4). The integra

$$
\iint_{R} f(x, y) d A=\int_{0}^{1} \int_{1-y}^{\sqrt{1-y^{2}}} f(x, y) d x d y
$$

