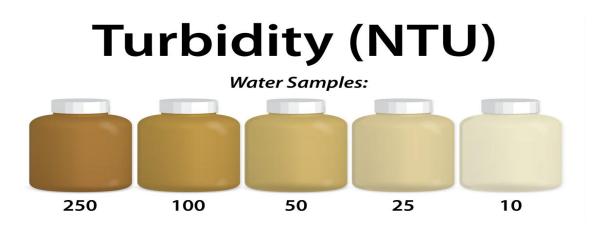

2. Water Treatment Plant (WTP)

2.1. Coagulation Tank (Rapid mixer)

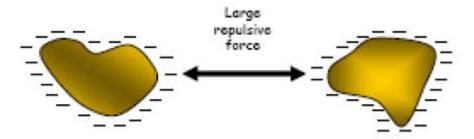
Coagulation is the destabilization of colloids by addition of chemicals that neutralize the negative charges.

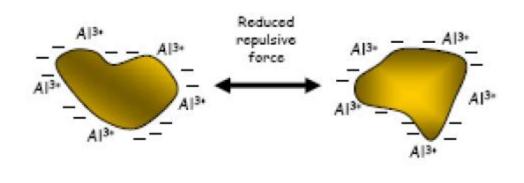

Colloids: clay, algae, microorganisms, organic and inorganic materials ...etc. All these matters can be measured by **Turbidity** test. **Turbidity** (NTU): Insoluble particles of soils, microorganism, and other materials impede the passage of light through water by scattering and absorbing the rays. Units of turbidity are Nephelometric turbidity unit (NTU)

Turbidity > 5 NTU can be noticed by visual observation.

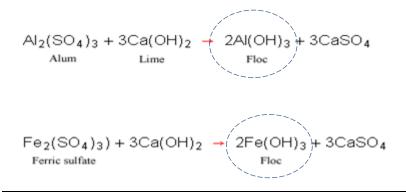
Muddy water exceeds 100 NTU

Treated drinking water is commonly less than 1 NTU


The maximum allowable limit is 1 - 5 NTU according to Jordanian Drinking Water Standards JS 286/1997.


The chemicals are known as coagulants, usually higher valence cationic salts $(Al^{3+}, Fe^{3+} \dots etc.)$ or polymers.

1) electrostatic repulsion


(simply, negative colloids repel other negatively charged colloids)

- Coagulants can be used to reduce the electrostatic repulsive forces
- The electrostatic repulsion reduced by the addition of countercharged ions [Al³⁺]

Reaction:

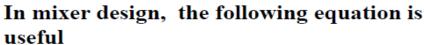
Factors Influencing Coagulation:

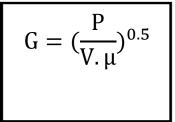
Coagulation will be affected by changes in the water's **pH**, **alkalinity**, **temperature**, **time**, **velocity and zeta potential**.

The effectiveness of a coagulant is generally pH dependent. Water with a color will coagulate better at low pH (4.4-6) with alum.

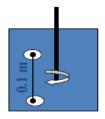
Alkalinity is needed to provide anions, such as (OH) for forming insoluble compounds to precipitate them out.

The higher the **temperature**, the faster the reaction, and the more effective is the coagulation. **Time** is an important factor as well. Proper mixing and detention times are very important to coagulation.


The higher **velocity** causes the shearing or breaking of floc particles, and lower velocity will let them settle in the flocculation basins. Velocity around 1 ft/sec in the flocculation basins should be maintained.


Zeta potential. Higher zeta potential requires the higher coagulant dose. An effective coagulation is aimed at reducing zeta potential charge to almost 0.

Mixing and Power:


- The degree of mixing is measured by Velocity Gradient (G)
- Higher G value, intense mixing
- Velocity Gradient: relative velocity of the two fluid particles/distance

$$G = dv/dy = 1.0/0.1 = 10 \text{ s}^{-1}$$

G= velocity gradient, s^{-1;} P = Power input, W V = Tank volume, m³; μ = Dynamic viscosity, (Pa.s)

Design parameters: G = from 700 to 1000 s^{-1} , Mixing time= 30 to 60 s

Example: A rapid mixing tank is 1mx1mx1.2m. The power input is 746 W (1 hp). Find the G value at a temperature of 20 °C.

Solution: At 20 °C, μ =0.001 Pa.s=0.001 N.s/m²

V=1x1x1.2=1.2 m³

P=746 W=746 N.m/s

$$G = \left(\frac{P}{V\mu}\right)^{0.5} = \left(\frac{746}{1.2*0.001}\right)^{0.5} = 788.5 \ s^{-1}$$
 ok within the range

If not, change the mixer motor or the dimensions of the tank.

Example: A square rapid mixing basin with a depth of water equal to 1.25 times the width is to be designed for a flow of 7570 m³/d. the velocity gradient is to be 790 mps/m (s⁻¹), the detention time is 40 s. Determine the basin dimension, the power required?

Solution: