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LAPLACE TRANSFORM-1

The Laplace transform of an expression f(t) is denoted by L{f(t)} and
is defined as the semi-infinite integral

Lif() = r floeta

In determining the transform of an expression, you will appreciate
that the limits of the integral are substituted for f, so that the result
will be an expression in 5. Therefore

Lft) =]:0f(t)e"‘dt=F(s)




So we have L{f(t)} = r f(t)e*dt = F(s)
0

Example 1
To find the Laplace transform of f(f) = a {constant).

Lia} = Jmﬂf'_ﬂd.[‘ ﬁ[—j = """']“I

-, L{a) :‘E' (s> 0)

Example 2

To find the Laplace transform of f(t) = e" (a constant). As with all
cases, we multiply f(t) by e and integrate between t = 0 and t = o

o L{e") = r gl dt = r g-le-at gt
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So, according to example 1 and two we can write the following:



4 1
L{-5} = —é; Lie ) =3+2

Mote that, as we said earlier, the Laplace transform is always an
expression in s.

Example 3

To find the Laplace transform of f(t) = sinaf. We could, of course,
apply the definition and evaluate

L{s.in r.:t} = r sin at - e dt
0

using integration by parts.
However, it is much shorter if we use the fact that

e = cos@ +jsind

so that sin# is the imaginary part of e, written .#(e™).
The function sinat can therefore be written . (e™") so that

L{sinat} = L{.#(e/™)} = ¥ Jm gitast qr — r g~ (5ol qp
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We can rationalise the denominator by multiplying top and bottom




‘ 5+ ja

_ 5+ ja a o
' L{Elﬂ ﬂf} = f{m} = m (only the imaginary part)

a

" L{Einﬁt] _5'3 -|—.|:IE'

As the (sin at) is the imaginary part so we select the imaginary
term from(s + ja) which is equal to (a). and we can solve this by
integration by part. We can use the same method to determine

L(cos at ) as it the real part so,

. S+ja] 3
L{Eﬂﬂﬂr}_m{33+ﬂz} ey

Accordingly the Laplace transform of the following are as

follows:
1 1
L{1} = Lt} = —
i 2 5
| L{sin 2t} = 5——; L{cosdt) = 5




Example 4
To find the transform of f(t) = t" where n is a positive integer.

By the definition L{"} = r e dt.
0

Integrating by parts

L{t"} = [r” (E_T:H :+EE et dt

__1 r”f‘”] +Err"‘1r“dt
o SJo

s

We said earlier that in a product such as t"¢~* the numerical value of 5
is large enough to make the product converge to zero as t — oo

[t"e?‘“] =0-0=0
0

L L{) = :J: -l g

You will notice that r t" e~ dt is identical to r t"e~™ dr except that
0 0

n is replaced by (n— 1).
ity = [ et de then = [ ele e
0 0

So I, =n/s * |,.1 this is from the following formula:

Ly =" e tdr
Slo



SO,
l,=n/s * 1,1
In-1= n—1/s *In—Z

l,.o-n-2/s *|,3  etc.... then

So i —rl‘"e‘“dt n—1

n-1

L - - !-"I-IH:

'I.I'!—E-

n—1mn-2
. N - etc.
5 g ~n3

nn=1n=2n-=3
I =—. . . N
"T s s 5 g -4

50 finally, we have
nn-1n- En 3 n—{n—l}fﬂ

I"_;I 5 5 5 5
But -ru=L~[t”}:L{1}=%
L _mn—1)n-2)n-3)...3)2)1) _ n
T sl ' = gl
n!
. L{t"} = oy

=g U= Lit}=3
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and with n=0, since 0! =1, the general result includes L{1} =
which we have already established.

Example 5

Laplace transforms of f{f) = sinh at and f(t) = cosh at.

Starting from the exponential definitions of sinh af and cosh at, i.e.
sinhat =4 (e —e™) and coshat =1(e" +e )

_ a
;. L{sinhat} 3
h 5
L{cosh at} P

So, we summarized the previous by the followings:

a 1 il
L{a} = it L{e"} = pay; L{t"} =
e alint
Li{sinat} = L L{cosat} = g
Lisinhat} = 5=—;  Licoshat} = 5~




(1) The transform of a sum (or difference) of expressions is the sum (or
difference) of the individual transforms. That is
L{f(t) £ g(t)} = L{f(£)} £ L{z(t)}

(2) The transform of an expression that is multiplied by a constant is the
constant multiplied by the transform of the expression. That is

L{kf(£)} = kL{f({t)}

Example 6

(@) L{2e7" +t} =L{2e7"} + L{t}
= 2L{e"*} + L{t}
2 +l_253+5+1
54152 525+ 1)
(b) L{2sin 3t + cos 3t} = 2L{sin 3t} + L{cos 3t}
= 3 5§ 35+6
=t@retE o w49
(c) L{4€* + 3cosh 4t} = 4L{e*} + 3L{cosh 4t}
e 3s
_4'3—24_5'53—16_5—2-‘_53—15
752 — 65— 64
T (s = 2)(s® — 16)
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L L{P 428441} = Fag-dg s

=Sl‘{53-i¥+4s+ﬁ}

Theorem 1 The first shift theorem

The first shift theorem states that if L{f(t)} = F(s) then
L{e™f (1)} = F(s +a)

Because L{E‘ "rfl:f:ll} i Euf d!ﬂ:ﬂf t df = J:ﬂ f{f:lf_[l ralt g4 — Fis + a)

That is
L{e™f()} = F(s + a)

The transform L{e~*f(t)} is thus the same as L{f(t)} with s everywhere
in the result replaced by (s + a).

For example L{sin 2t} = %

2 2

a il I
then L{e*sin2t} {5+3)3+4 TGt




Because L{1*} 335 . L{r*e*} is the same with s replaced by (s — 4).

3 -
o L) = 2

(s — 4y

EXAMPLES:

s+2
(5+2)*-9
5+ 2

5

L. L{cosh3} =5

o L{e ¥ cosh3t} =

2. L{sin3t} = 5-3—3—“1_9




Theorem 2 Multiplying by ¢ and "
If L{f(t)} = F(s) then L{tf(t)} = —F'(s)

Because L{tf(t)} = r tf{etdt = r I t}( E—JI)

—Ej; F(t)e= dt = —F'(s)

That is
L{tf(£)} = —F'(s)
For example, L{sin2f} = 2

+ 4
titsnzn -3 (2

)_ 45
4 _[52+4j|3

Theorem 3 Dividing by ¢
If L{f(t)} = F(s) then L{@} = r F(o)do

provided Lim (ﬂ;[ﬂ) exists. To demonstrate this we start from the
t—

right-hand side of the result

oo o 2o MNotice the dummy wari-
j Fio)do = {I f{f}'ﬂ_ﬂdr}dﬂ’ able o. The end result is
= == LAe=0 an expression in s which
_ [~ jr[:t:]e.—r.r!‘ de di caomes from the lower lirmit
P of the integral so the vari-
ot able of integration, which
~ Jio fl:f}{r d"'} df  js absorbed during the pro-
cess of integration, is
—_ f{t}— dF changed to o MNotice also
t that we interchange the
L{f{t}} order of integration.
£

This rule is somewhat restricted in use, since it is applicable only if
I:m (f'{ :I) exists. In indeterminate cases, we use I"Hﬂp]ta.l’s mule to

ﬁnd out. Let's try a couple of examples.




Example 1

Determine L{ sin IEt}

First we test Lim {g} = {g} =7 By L‘Hfjpital’s rule, we differentiate
=0
top and bottom separately and substitute =0 in the result to

ascertain the limit of the new expression.

. [sinat . [acosat ] - .
Lmi{ } =L1m{ } = @, that is, the limit exists and the
f— [ t—l) 1

theorem can therefore be applied.

So L{sinat} =5—3-_%EE, therefore L{slr:ar} = r::—i_i? do
&
- fran(9)]
;- ren()
arctan G)

i 5 il
Notice that arctan(s) + arctan (E) =5 as can be /Is
seen from the figure

[

Example 2
Determine L{

1 —cos2f
t

First we test whether Lim {1 — imzt} exists. Result? .
t—sl)



Lim {ﬂ} 1ot g= ? . Apply I'Hépital’s rule.

) t 0
Lim {ﬂ} — Lim {2’“1 Et} ~9_0 - limit exists.
£=+) t £l 1 1

5
5 4+ 4

L{1 —-cos2t} = % -

Then, by Theorem 3
1 —cos2t = (1 &
L{ t }_hm{?azﬂ}dﬂ
I 1 R | o =
= ]Ilﬂ'—ilﬂt:ﬂzﬂ'&}Jﬂ_j—E’m(ﬂl_l_‘l)‘a:j

o2
a_z+4)—vln1=l]'

When ¢ — oo, ln(

Therefore, L{w}

[




1 Standard transforms

f(t) Lif(t)}; = F(s)
i
E [—
5
t 1
S$—d
S a
sina P
5
cosat e
: a
sinh at P
hat s
COS pe g
!
£ 5-% (n a positive integer)

2 Theorem 1 The first shift theorem
If L{f(t)} = F(s), then L{e"™f(t)} = F(s + a)
3 Theorem 2 Multiplying by t

If L{F(£)} = F(s), then L{ff(f)} = -gs (F(s)}
4 Theorem 3 Dividing by t
If L{f(t)} = F(s), then L{f '[t}} _ rﬂ F(o) do

! =5

provided Lim {@} exists.

tsll




Exercise
Determine the Laplace transforms of the following expressions.

1 sin3t 6 tcosh4t
2 cos2t 7 t2-3t+4
3 eV B Eatr_I
4 at? 9 & cosdf
5 sinh 3t 10 tisint
Results:
. 3 52 +16
2+9 (s2 — 16)°
5 2
7 —(45*—35+2
= 5¢ 4+ 4 53{ +2)
1 L
e In(5=3)
3 Py 8 In —3
12 s—3
- =l ? 52 — G5+ 25
65* — 2
5 23 10 -
§t =19 (2 +1)

LAPLACE TRANSFORM OF RAMP FUNCTION:




To begin, we determine the Laplace transform of some simple causal functions. For example, if we
consider the ramp function f(¢) = t.u(t) with graph

A f(t) =tult)

we find:

Lt u(t)}

f e "'t u(t)dt
0

(& a]
= f e 't di since in the range of the integral u(t) =1
0

-

¢ E—R? o0 o0 E—.-ar
= — dt using integration by parts
L (=) g o (==

B f.E—R!‘ o - ! E—ﬁt ]2’5
a [ (—s) ], (—s)%],

oo ().

g2

C{t u(t)}

Thus, if f(t) = t u(t) then F(s) =1/s2.




A similar, but more tedious, calculation yields the result that if
f(t) = t"u(t) in which n is a positive integer then:

L{t"u(t)} =nl/ s ™

[We remember n! =n(n-1)(n - 2)...(3)(2)(1).]

EXAMPLE: Find the Laplace transform of the step function u(t).

a0
fou should obtain [ e df since in the range of integration, { > () and so u(t) = 1 leading to
Jo

Llult)} = /lie'“zr:[a‘] dt = FE'“(H

o] 40

Cl{u(t)} = [1 et dt
0

ERa Ok
l=5) ]y | —5) 5

EXAMPLE: Find the Laplace transform of the following casual

function, means the function f(t)= e is well defined in the
negative region but if we multiply it by the unit step function it
will convert to be defined in the positive region only as the
function and its graph.



f(t)= e™ u(t)

f(t) = e=tult)

"
In this case,
L{e " u(t)} = [ e e dt
Ju
= [T E‘_[FH-“}!‘ d#
Jo
—(a4alt 1= 1
= [ } = (zero contribution from the upper limit)
~(s+a)|, s+a
1
Therefore, if f(t) = e ™ u(t) then F(s) = -
s+a

The linearity property of the Laplace transformation

If f(t) and g(t) are causal functions and ¢,, ¢, are constants then

Ll f(t) + caglt)} = _[E ey £(£) + cag(t)] dt

= Elf e " f(t)dt + ez e “g(t)dt

0

= al{f(t)} + c2L{g(t)}



TABLE OF SOME CASUAL FUNCTIONS LAPLACE TRANSFORM

Rule Causal function Laplace transform
1 flt) F(s)
1
2 t -
u(t) -
!
3 t"u(t) =
1
g “H(t
e u(t) 5+ a
5 inat . u(t) -
sinat . u
sin T
5
6 o8 at .l
cos at . u(t) e
7 e “sinbt . u(t) b
L ‘ (s +a)*+ b
8 e ™ cos bt H[f} {q +*;ﬂ-|:-ll;1+ -

EXAMPLE: Find the Laplace transform of the following casual
function:



L{2cost.u(t) = 3t*u(t)} = 2CL{cost.u(t)} —3L{t"u(t)]
5 2
N 2(.~;1'+1) _H(S_’*)

EXAMPLE: Find the Laplace transform of the delayed step-
function u(t-a), a>0.

Answer

You should obtain L{u(t —a)} = f e dt (note the lower limit is a) since:

Ll{u(t —a)} = / e *ult —a)dt = [ e “u(t —a)dt + [ e “ut —a)dt
0 40 Ja

In the first integral 0 < f < a and so (t — a) < 0, therefore u(t — a) = 0.

In the second integral @ <t < oc and so (t = a) > (), therefore u(t — a) = 1. Hence

L{u(t—a)} =0+ f e ¥ dt.

:fxe—#tdf_: E—.-:ut T: E—.m
; (—s) ], 5

END




