

Fast Fourier Transform (FFT)

Decimation-in-Time FFT

The number of point is assumed as a power of 2, that is, 2^N , the decimation in time approach is one of breaking of N –point transform in to two $\frac{N}{2}$ –point transforms, then breaking each $\frac{N}{2}$ –point transforms into $\frac{N}{4}$ – point transforms , and continuing this process until two– point transform are obtained.

1) The input data have been shuffled. The input data appear in what is called " bit reversed order" illustrated bellow for N = 8.

Position	Binary	Bit reversed	Sequence
	Equivalent		index
<i>x</i> (6)	110	011	<i>x</i> (3)
<i>x</i> (2)	010	010	<i>x</i> (2)
<i>x</i> (1)	001	100	<i>x</i> (4)

It is seen that x(3) is in the sixth position and x(2) in the second position.

2) The basic computational block in the diagram is called a "butterfly'.

3) The frequency domain values, X(k), are in normal order.

Ex: Determine DFT for the following signal using FFT algorithm:

 $x(n) = \{1,2\}$

Solution:

 $X(k) = \{3, -1\}$

Ex: Determine FFT for the following signal:

 $x(n) = \{1, 2, 3, 4\}$

Solution:

First Step: The position will be reversed

Position	Binary	Bit reversed	Sequence
	Equivalent		index
<i>x</i> (0)	00	00	<i>x</i> (0)
<i>x</i> (1)	01	10	<i>x</i> (2)
<i>x</i> (2)	10	01	<i>x</i> (1)
<i>x</i> (3)	11	11	<i>x</i> (3)

Second Step: Determine values of $W_N^n = e^{-jwnk}$

 $W_4^0 = 1$ $W_4^1 = -j$ $W_4^2 = -1$ $W_4^3 = j$

 $X(k) = \{10, -2 + 2j, -2, -2 - 2j\}$

Ex: Find FFT for the following sequence:

 $x(n) = \{0, 1, 0, 2, 3, 1, 4, 1\}$

Solution:

First Step: The position will be reversed

Position	Binary	Bit reversed	Sequence
	Equivalent		index
<i>x</i> (0)	000	000	X(0)
<i>x</i> (1)	001	100	<i>X</i> (4)
<i>x</i> (2)	010	010	<i>X</i> (2)
<i>x</i> (3)	011	110	X(6)

<i>x</i> (4)	100	001	X(1)
<i>x</i> (5)	101	101	X(5)
<i>x</i> (6)	110	011	X(3)
x(7)	111	111	X(7)

Second Step: Determine values of $W_N^n = e^{-jwnk}$

 $W_8^0 = 1$ $W_8^1 = 0.707 - j0.707$ $W_8^2 = -j$ $W_8^3 = -0.707 - j0.707$ $W_8^4 = -1$ $W_8^5 = -0.707 + j0.707$ $W_8^6 = j$ $W_8^7 = 0.707 + j0.707$

