Fast Fourier Transform (FFT)

Decimation-in-Time FFT

The number of point is assumed as a power of 2 , that is, 2^{N}, the decimation in time approach is one of breaking of N-point transform in to two $\frac{N}{2}$-point transforms, then breaking each $\frac{N}{2}$-point transforms into $\frac{N}{4}$ - point transforms, and continuing this process until two- point transform are obtained.

1) The input data have been shuffled. The input data appear in what is called " bit reversed order" illustrated bellow for $N=8$.

Position	Binary Equivalent	Bit reversed	Sequence index
$x(6)$	110	011	$x(3)$
$x(2)$	010	010	$x(2)$
$x(1)$	001	100	$x(4)$

It is seen that $x(3)$ is in the sixth position and $x(2)$ in the second position.
2) The basic computational block in the diagram is called a "butterfly'.
3) The frequency domain values, $X(k)$, are in normal order.

Ex: Determine DFT for the following signal using FFT algorithm:

$x(n)=\{1,2\}$

Solution:

$X(k)=\{3,-1\}$
Ex: Determine FFT for the following signal:
$x(n)=\{1,2,3,4\}$

Solution:
First Step: The position will be reversed

Position	Binary Equivalent	Bit reversed	Sequence index
$x(0)$	00	00	$x(0)$
$x(1)$	01	10	$x(2)$
$x(2)$	10	01	$x(1)$
$x(3)$	11	11	$x(3)$

Second Step: Determine values of $W_{N}^{n}=e^{-j w n k}$
$W_{4}^{0}=1$
$W_{4}^{1}=-j$
$W_{4}^{2}=-1$
$W_{4}^{3}=j$

Ex: Find FFT for the following sequence:

$x(n)=\{0,1,0,2,3,1,4,1\}$
Solution:
First Step: The position will be reversed

Position	Binary Equivalent	Bit reversed	Sequence index
$x(0)$	000	000	$X(0)$
$x(1)$	001	100	$X(4)$
$x(2)$	010	010	$X(2)$
$x(3)$	011	110	$X(6)$

Al-Mustaqbal University College
Department of Medical Instrumentation Techniques Engineering Class: 3rd
Subject: Digital Signal Processing
Lecturer: Dr. Rami Qays Malik Lecture: 8- Fast Fourier Transform (FFT)

$x(4)$	100	001	$X(1)$
$x(5)$	101	101	$X(5)$
$x(6)$	110	011	$X(3)$
$x(7)$	111	111	$X(7)$

Second Step: Determine values of $W_{N}^{n}=e^{-j w n k}$

$$
\begin{aligned}
& W_{8}^{0}=1 \\
& W_{8}^{1}=0.707-j 0.707 \\
& W_{8}^{2}=-j \\
& W_{8}^{3}=-0.707-j 0.707 \\
& W_{8}^{4}=-1 \\
& W_{8}^{5}=-0.707+j 0.707 \\
& W_{8}^{6}=j \\
& W_{8}^{7}=0.707+j 0.707
\end{aligned}
$$

Al-Mustaqbal University College

 Department of Medical Instrumentation Techniques Engineering Class: 3rdSubject: Digital Signal Processing
Lecturer: Dr. Rami Qays Malik
Lecture: 8- Fast Fourier Transform (FFT)

