Lecture 7: Arrays and Matrices

In an array, multiple values of the same data type can be stored with one variable name. In a computer, array elements are stored in a sequence of adjacent memory locations. Arrays are of two types:

1. One-dimensional array.
2. multi-dimensional array.

* One-Dimensional Arrays

The position of an element in the array is called the array index or subscript. In the case of an array of five elements $A[4]=\{6,7,8,9$,$\} , their$ index or subscript values are $0,1,2$, and 3 . Note that the count for array elements or subscripts starts from 0 as shown below.
$A[0]=6$
$A[1]=7$
$A[2]=8$

$A[3]=9$

INPUT/OUTPUT of one-dimensional array

The input/output of an array is carried out element by element either a for loop or while loop may be used. For example, an array Bill[5] having n elements is to be read as follows Examples:

Ex1

```
Int Bill [5]
for (int i = 0; i < 5; i++) {
```

```
        cin>> Bill[i];
    cout << Bill[i] << "\n";
}
```

Or an array can be read in another way called "static initialization" as shown:
int $\operatorname{Bill}[5]=\{10,20,30,40,50\} ;$
and the output (printing) is as follows:
for (int $i=0 ; i<5 ; i++$) ;

Cout \ll Bill[i]<< "\n";

OR for (int $\mathrm{i}=0 ; \mathrm{i}<5 ; \mathrm{i}++$);

Cout \ll Bill[i]<<endl;

Ex2

```
int Bill[5] = {10, 20, 30, 40, 50};
for (int i = 0; i < 5; i++) {
    cout << Bill[i] << "\n";
}
```


Ex: This example outputs the index of each element together with its

 value.```
#include <iostream>
#include <string>
using namespace std;
int main() {
 string cars[5] = {"Volvo", "BMW", "Ford", "Mazda", "Tesla"};
 for (int i = 0; i < 5; i++) {
 cout << i << " = " << cars[i] << "\n";
 }
 return 0;
}
```


## TWO-DIMENSIONAL ARRAYS (MATRIX)

The two-dimensional array is represented by i rows and j columns. The figure below shows an array of two rows and five columns.
$\mathrm{A}[0][0]=5$
$\mathrm{A}[0][1]=2$

$A[1][0]=6$
$A[1][3]=9$

* A two-dimensional array can be declared as below.
type name [number of rows] [number of columns];


## For example:

int A[2][5];
float $\mathrm{B}[10][20]$;

## INPUT/OUTPUT OF TWO-DIMENSIONAL ARRAY

The two-dimensional array $A[m][n]$ can be read as follow:
for $(\mathrm{i}=0 ; \mathrm{i}<\mathrm{m} ; \mathrm{i}++$ )

$$
\begin{aligned}
& \text { for }(j=0 ; j<n ; j++) \\
& \qquad \operatorname{cin} \gg A[i][j] ;
\end{aligned}
$$

We can use the static initialization with the two-dimensionally as follow:
float $M[2][5]=\{5.1,2.2,3.8,2.5,4.7,6.1,7.2,8.8,9.0,8.4\}$;
float $M[2][5]=\{\{5.1,2.2\},\{3.8,2.5\},\{4.7,6.1\},\{7.2,8.8\},\{9.0,8.4\}\}$;

To print a two-dimensional array, we can use the following form:

```
for(i=0; i<m;i++)
{
 for(j=0; j<n; j++)
 cout<<A[i][j]<<" ";
 cout<<endl;
}
```


## Example:

This program initializes 8 elements in a two-dimensional array of size four rows and two columns, then prints the array on output:

```
 #include<iostream>
using namespace std;
int main()
{
 int arr[4][2] = {{1, 2}, {3, 4}, {5, 6}, {7, 8}};
 int i, j;
 cout<<"The Two-dimensional Array is:\n";
 for(i=0; i<4; i++)
 {
 for(j=0; j<2; j++)
 cout<<arr[i][j]<<" ";
 cout<<endl;
 }
 cout<<endl;
 return 0;
}
```



```
#include<iostream>
using namespace std;
main()
{
 int arr[4][2] = {
 { 10, 11 },
 { 20, 21 },
 { 30, 31 },
 { 40, 41 }
 } ;
 int i,j;
 cout<<"Printing a 2D Array:\n";
 for(i=0;i<4;i++)
 {
 for(j=0;j<2;j++)
 {
 cout<<"\t"<<arr[i][j];
 }
 cout<<endl;
 }
}
```


## - C:\Users\sneha\Desktop\C++.exe

Printing a 2D Array:
$10 \quad 11$
$20 \quad 21$
$30 \quad 31$
$40 \quad 41$

Process exited after 0.06308 seconds with return Press any key to continue . . .

