Education and Scientific Research AL Mustaqbal university college Chemical Engineering Department

Analytical chemistry laboratory
Experimental No. 1
Preparation of standard solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Prepared by

Asst. lect. Ban Ali Hassan
2021-2022

- Purpose of This Test:

Determination Normality of Solution.

- Introduction and theory :

- Primary Standard solution:

The primary standard is a highly purified compound that serves as a reference material in volumetric and mass titrimetric methods. The accuracy of a method is critically dependent on the properties of this compound. Important requirements for primary standard are the following: High purity (e.g.99.9\%by weight), atmospheric stability, absent of hydrate water, modest cost, reasonable solubility in the titration medium and reasonable large molar mass. One of such compounds is sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$.

- Secondary Standard solution:

Some compounds consider as secondary standard solution due missing one of the important requirements for primary standard. For that can prepare as an approximate normal solution and then calibrate with a known standard chemical solution by volumetric analysis. Such as: hydrochloric acid HCL, sodium hydroxide NaOH .

Procedure:

- To prepare 250 ml of 0.1 N Sodium carbonate ($\mathrm{Na}_{2} \mathrm{CO}_{3} \mathrm{CO}_{3}$).

1- Dry Appropriate quantity of sodium carbonate in an oven set at $110 . \mathrm{C}$ for 1 hr . Store the dried material in desiccators.
2- Calculate the weight of $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right.$.) from the law.
3- Weight (NaR2RCOR3R) using a microbalance (1.0 or $0.1) \mathrm{mg}$ accuracy.
4- Transfer this quantity into a 250 ml beaker and solve it in about 50 ml distilled water (D.W). Transfer the solution into a 250 ml volumetric flask. Complete the solution to the mark by distilled water with the same beaker. Stopper the volumetric flask and shake well.

Calculation :

$N=\frac{w t}{\text { eq.wt }} \times \frac{1000}{V \text { in ml }}$ eq $/ L$
eq.wt $=\frac{\text { M.wt }}{\text { No. of eq }}$
$\mathrm{W}_{\mathrm{t}}=$ Wight of $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{gm})$
$\mathrm{V}=$ volume of volumetric flask (ml)
$\mathrm{N}=$ Normality of solution.

Discussion:

- Determine the volume (ml) required to dilute a solution containing 48.480 g of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in order to prepare a 1 N of the solution.
- What are the specifications of primary standard solution?

- Preparation of approximately (0.1 N) HCl from

37% and 1.2 Sp.g

1- Calculate the Normality of the concentrated HCl from the law:
$\mathrm{N}_{1}=\frac{\boldsymbol{\rho} \times \% \times \mathbf{1 0}}{\text { eq.wt. }}$
Sp. Gr. $=\frac{\boldsymbol{\rho}_{\mathrm{HCl}}}{\boldsymbol{\rho}_{\text {water }}}$
Eq. wt. $=\frac{\text { Mwt. of } \mathrm{HCl}}{\text { no of } \mathrm{H}^{+}}$
2- To prepare (500 ml) of 0.1 N HCL:

$$
\begin{aligned}
& \mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2} \\
& \mathrm{~N}_{1 . \mathrm{X}} ?=0.1 \times 500
\end{aligned}
$$

3- Transfer some of distilled water to 500 ml volumetric flask and add the calculated volume of conc. HCl . Mix the content thoroughly. Complete to the mark with distilled water and make a label.

- Discussion:

-What are the specifications of secondary standard solution?

- Determine the volume (ml) required to dilute a solution of HCl from conc. 37% and Sp.g. 1.2 to 1000 ml if the Normality is $0.25 \mathrm{eq} / \mathrm{l}$

