Subject: Strength of Materials
Lecturer: M.Sc Murtadha Mohsen Al-Masoudy
E-mail: Murtadha Almasoody@mustaqbalcollege.edu.iq

Al-Mustaqbal University College Air Conditioning and Refrigeration Techniques Engineering Department

Strength of Materials

Second Stage
M.Sc Murtadha Mohsen Al-Masoudy

Simple Strains

NORMAL STRAIN UNDER AXIAL LOADING

Concepts of Strain:

- As already mentioned, wherever a single force (or a system of forces) acts on a body, it undergoes some deformation (Figure 6.1). This deformation per unit length is known as strain. Mathematically strain may be define as deformation per unit length, i.e., strain is:

$$
\varepsilon=\frac{\delta l}{l} \quad \text { or } \quad \delta l=\varepsilon . l
$$

Where $\boldsymbol{\delta} \boldsymbol{l}=$ Change of length of the body, and
$\boldsymbol{l}=$ Original length of the body

Figure 6.1

- Strain is thus, a measure of the deformation of the material and is a non-dimensional quantity i.e. it has no units. It is simply a ratio of two quantities with the same unit.

Stress - Strain Relationship

- When a material is loaded, the stress is proportional to the strain mathematically, and as shown in Figure (6.2),

Figure (6.2): Stress-strain diagrams of two typical ductile materials

- The initial portion of the stress - strain diagram for most material used in engineering structures is a straight line. For the initial portion of the diagram, the stress (σ) is directly proportional to the strain (ε). Therefore, for a specimen subjected to a uniaxial load, can write:

$$
\frac{\text { Stress }}{\text { Strain }}=E \rightarrow \sigma=E \varepsilon
$$

This relationship is known as Hook's Law.

* Note: Hook's Law describes only the initial linear portion of the stress - strain curve for a bar subjected to uniaxial extension.
* The slope of the straight line portion of the stress - strain diagram is called the Modulus of Elasticity or Young's Modulus.

$$
E=\frac{\sigma}{\boldsymbol{\varepsilon}}
$$

Deformation of a Body due to Force acting on it

Consider a body subjected to a tensile force as shown in Figure (6.3).

Figure (6.3)
Let $P=$ Load or force acting on the body,
$l=$ Length of the body,
$A=$ Cross - sectional area of the body,
$\sigma=$ Stress induced in the body,
$E=$ Modulus of elasticity for the material of the body,
$\varepsilon=$ Strain, and
$\delta l=$ Deformation of the body.
Knowing that the stress is:

$$
\sigma=\frac{P}{A}
$$

Murtadha Al-Masoudy

And the strain is:

$$
\varepsilon=\frac{\sigma}{E}=\frac{\frac{P}{\bar{A}}}{E}=\frac{P}{E A}
$$

Then the deformation is:

$$
\delta l=\varepsilon(l)=\frac{P l}{E A}
$$

Examples

Example (6.1): A steel rod (1 m) long and (20 mmx 20 mm) in cross - section is subjected to a tensile force of (40 kN). Determine the elongation of the rod, if modulus of elasticity for the rod material is (200 GPa).

Solution:

$$
\delta l=\frac{P l}{E A}=\frac{40 \times 10^{3}\left(1 \times 10^{3}\right)}{200 \times 10^{3}(20 \times 20)}=0.5 \mathrm{~mm}
$$

Example (6.2): In an experiment, a steel specimen of (13mm) diameter was found to elongate $(0.2 \mathrm{~mm})$ in a $(200 \mathrm{~mm})$ gauge length when it was subjected to a tensile force of (26.8 kN). If the specimen was tested within the elastic range, what is the value of Young's modulus for the steel specimen?

Solution:

$$
\begin{aligned}
& \delta l=\frac{P l}{E A} \rightarrow 0.2=\frac{26.8 \times 10^{3}(200)}{E\left(\frac{\pi}{4}(13)^{2}\right)} \\
& E=201910.2 \mathrm{MPa} \text { or } 201.91 \mathrm{GPa}
\end{aligned}
$$

Example (6.3): Determine the deformation of the steel rod shown in Figure (6.4) under the given loads. $E=29 \times 10^{6} \mathrm{psi}$.

Figure (6.4)

Solution:
We divide the rod into three component parts shown in Figure (6.5b) and write:

$$
\begin{gathered}
L_{1}=L_{2}=12 \mathrm{in} . \\
L_{3}=16 \mathrm{in} . \\
A_{1}=A_{2}=0.9 \mathrm{in}^{2} \\
A_{3}=0.3 \mathrm{in}^{2}
\end{gathered}
$$

Section in each part as shown in Figure (6.5c), then:

$$
\begin{aligned}
& \sum F_{x}=0 \\
& P_{1}=60 \mathrm{kips}=60 \times 10^{3} \mathrm{lb} \\
& P_{2}=-15 \mathrm{kips}=-15 \times 10^{3} \mathrm{lb} \\
& P_{3}=30 \mathrm{kips}=30 \times 10^{3} \mathrm{lb}
\end{aligned}
$$

The total deformation in steel bar is:

$$
\begin{gathered}
\delta L=\sum \frac{P_{i} L_{i}}{E_{i} A_{i}} \\
\begin{array}{c}
\delta L=\frac{1}{29 \times 10^{6}}\left(\frac{60 \times 10^{3}(12)}{0.9}+\frac{-15 \times 10^{3}(12)}{0.9}+\frac{30 \times 10^{3}(16)}{0.3}\right)=\frac{2.2 \times 10^{6}}{29 \times 10^{6}} \\
=75.9 \times 10^{-3} \mathrm{in} .
\end{array}
\end{gathered}
$$

Example (6.4): The rigid bar $B D E$ is supported by two links $A B$ and $C D$. Link $A B$ is made of aluminum ($E=70 \mathrm{GPa}$) and has a cross-sectional area of $500 \mathrm{~mm}^{2}$; link $C D$ is made of steel ($E=200 \mathrm{GPa}$) and has a cross-sectional area of $600 \mathrm{~mm}^{2}$. For the $30-\mathrm{kN}$ force shown in Figure (6.6), determine the deflection

- (a) of B,
(b) of D,
- (c) of E.

Figure (6.6)

Solution:

Bar BDE as F.B.D:

$$
\begin{gathered}
\cup \sum M_{B}=0 \\
F_{C D}(0.2)-30(0.6)=0 \\
F_{C D}=+90 k N \text { (Tens.) } \\
\uparrow \sum F_{y}=0 \rightarrow F_{A B}+F_{C D}-30=0 \\
\rightarrow F_{A B}=30-90=-60(\text { Comp. })
\end{gathered}
$$

(a) Deflection of B:

$$
\begin{gathered}
\delta_{B}=\frac{P l}{E A}=\frac{\left(-60 \times 10^{3}\right)(0.3)}{\left(70 \times 10^{9}\right)\left(500 \times 10^{-6}\right)} \\
\delta_{B}=-514 \times 10^{-6} \mathrm{~m} \text { or } \delta_{B}=-0.514 \mathrm{~mm}
\end{gathered}
$$

The negative sign indicates a contraction of member $A B$, and, thus, an upward deflection of end B :

$$
\delta_{B}=0.514 \mathrm{~mm} \uparrow
$$

(b) Deflection of D :

$$
\begin{gathered}
\delta_{D}=\frac{P l}{E A}=\frac{\left(90 \times 10^{3}\right)(0.4)}{\left(200 \times 10^{9}\right)\left(600 \times 10^{-6}\right)} \\
\delta_{D}=300 \times 10^{-6} \mathrm{~m} \text { or } \\
\delta_{D}=0.300 \mathrm{~mm} \downarrow
\end{gathered}
$$

(c) Deflection of E:

We denote by B^{\prime} and D^{\prime} the displaced positions of points B and D. Since the bar $B D E$ is rigid, points B^{\prime}, D^{\prime}, and E^{\prime} lie in a straight line and we write:

$$
\begin{gathered}
\frac{B B^{\prime}}{D D^{\prime}}=\frac{B H}{H D} \rightarrow \frac{0.514}{0.300}=\frac{200-x}{x} \rightarrow x=73.7 \mathrm{~mm} \\
\frac{E E^{\prime}}{D D^{\prime}}=\frac{H E}{H D} \rightarrow \\
\frac{\delta_{E}}{73.7}=\frac{400+73.7}{73.7} \\
\rightarrow \delta_{E}=1.928 \mathrm{~mm} \downarrow
\end{gathered}
$$

