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 HOOKE’S LAW FOR PLANE STRESS

 THE RELATIONSHIP BETWEEN E AND G:

For a uniaxial stress state, 𝝈𝝈𝒙𝒙 , ( Figure 6.7) 
the linear relationship between stress and 
strain, 𝜖𝜖𝑥𝑥 , was given by Hooke’s Law: 

𝜖𝜖𝑥𝑥 =
𝜎𝜎𝑥𝑥
𝐸𝐸

Poisson’s ratio, v, relates the transverse strain, 
𝜖𝜖𝑦𝑦, to 𝜖𝜖𝑥𝑥: 

𝜖𝜖𝑦𝑦 = 𝜖𝜖𝑧𝑧 = −𝑣𝑣𝜖𝜖𝑥𝑥 = −𝑣𝑣
𝜎𝜎𝑥𝑥
𝐸𝐸

For linearly elastic materials, the shear modulus G and Young’s modulus E are related by 
the equation: 

𝐺𝐺 =
𝐸𝐸

2(1 + 𝑣𝑣) 

 For this equation to apply, the material must not only be linearly elastic, it must also
be isotropic, and that is, its material properties like E and v must be independent
of orientation in the body.

 Plane Stress. A body that is subjected to a two-dimensional state of stress with
𝝈𝝈𝒛𝒛 = 𝝉𝝉𝒙𝒙𝒛𝒛 = 𝝉𝝉𝒚𝒚𝒛𝒛 = 𝟎𝟎, is said to be in a state of plane stress. An element in plane
stress is shown in Figure (6.8).

Figure (6.8) 

Figure 6.7 
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If the material of which the body is composed is linearly elastic and isotropic, the effects 
of stresses 𝝈𝝈𝒙𝒙, 𝝈𝝈𝒚𝒚, and 𝝉𝝉𝒙𝒙𝒚𝒚 can be superposed, giving Hooke’s Law for plane stress: 

𝜖𝜖𝑥𝑥 =
1
𝐸𝐸 �𝜎𝜎𝑥𝑥 − 𝑣𝑣𝜎𝜎𝑦𝑦� 

𝜖𝜖𝑦𝑦 =
1
𝐸𝐸 �𝜎𝜎𝑦𝑦 − 𝑣𝑣𝜎𝜎𝑥𝑥� 

𝛾𝛾𝑥𝑥𝑦𝑦 =
1
𝐺𝐺 𝜏𝜏𝑥𝑥𝑦𝑦 

Generalized Hooke’s Law for Isotropic Materials 

Let the body be subjected to stresses 𝜎𝜎𝑥𝑥, 𝜎𝜎𝑦𝑦, 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑥𝑥𝑦𝑦, 𝜏𝜏𝑥𝑥𝑧𝑧 and 𝜏𝜏𝑦𝑦𝑧𝑧 as shown in Figure (6.9). 

Figure (6.9) 

Figure (6.10) illustrate the strains produced separately by the three normal stresses, 𝜎𝜎𝑥𝑥, 
𝜎𝜎𝑦𝑦, and 𝜎𝜎𝑧𝑧. 

By the superposition principle, the total extensional strains are given by: 

𝜖𝜖𝑥𝑥 =
1
𝐸𝐸 �𝜎𝜎𝑥𝑥 − 𝑣𝑣�𝜎𝜎𝑦𝑦 + 𝜎𝜎𝑧𝑧��

𝜖𝜖𝑦𝑦 =
1
𝐸𝐸 �𝜎𝜎𝑦𝑦 − 𝑣𝑣(𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑧𝑧)�
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𝜖𝜖𝑧𝑧 =
1
𝐸𝐸 �𝜎𝜎𝑧𝑧 − 𝑣𝑣�𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑦𝑦�� 

Figure (6.10) 

 For an isotropic linearly elastic material, the shear stresses are related to the shear
strains by the following equations:

𝛾𝛾𝑥𝑥𝑦𝑦 =
1
𝐺𝐺 𝜏𝜏𝑥𝑥𝑦𝑦 ,   𝛾𝛾𝑥𝑥𝑧𝑧 =

1
𝐺𝐺 𝜏𝜏𝑥𝑥𝑧𝑧,   𝛾𝛾𝑦𝑦𝑧𝑧 =

1
𝐺𝐺 𝜏𝜏𝑦𝑦𝑧𝑧 

These shear strains are illustrated in Figure (6.11). 

Figure (6.11): Illustration of shear strains. 
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Solving the above equations for the stresses in terms of the strains, we get: 

𝜎𝜎𝑥𝑥 =
𝐸𝐸

(1 + 𝑣𝑣)(1 − 2𝑣𝑣) �(1 − 𝑣𝑣)𝜖𝜖𝑥𝑥 + 𝑣𝑣�𝜖𝜖𝑦𝑦 + 𝜖𝜖𝑧𝑧��

𝜎𝜎𝑦𝑦 =
𝐸𝐸

(1 + 𝑣𝑣)(1 − 2𝑣𝑣) �(1− 𝑣𝑣)𝜖𝜖𝑦𝑦 + 𝑣𝑣(𝜖𝜖𝑥𝑥 + 𝜖𝜖𝑧𝑧)�

𝜎𝜎𝑧𝑧 =
𝐸𝐸

(1 + 𝑣𝑣)(1− 2𝑣𝑣) �(1 − 𝑣𝑣)𝜖𝜖𝑧𝑧 + 𝑣𝑣�𝜖𝜖𝑦𝑦 + 𝜖𝜖𝑥𝑥��

and 

𝜏𝜏𝑥𝑥𝑦𝑦 = 𝐺𝐺𝛾𝛾𝑥𝑥𝑦𝑦 ,   𝜏𝜏𝑥𝑥𝑧𝑧 = 𝐺𝐺𝛾𝛾𝑥𝑥𝑧𝑧 ,   𝜏𝜏𝑧𝑧𝑦𝑦 = 𝐺𝐺𝛾𝛾𝑧𝑧𝑦𝑦 

Examples 

Example (6.5): A prismatic bar of circular cross – section is loaded by tensile force (P=85 
kN). The bar has length (3 m) and diameter (30 mm). It is made of aluminum with modulus 
of elasticity (70 GPa) and Poisson's ratio (1/3). Calculate the elongation, the decrease in 
diameter and the change in volume. 

Solution:

𝛿𝛿 = 𝜀𝜀𝑥𝑥 . 𝑙𝑙      𝑀𝑀𝑖𝑖𝑎𝑎     𝜀𝜀𝑥𝑥 =
𝜎𝜎𝑥𝑥
𝐸𝐸

𝜎𝜎𝑥𝑥 =
𝑃𝑃
𝐴𝐴 =

85 × 103
𝜋𝜋
4 (30)2

= 120.25 𝑀𝑀𝑃𝑃𝑀𝑀 

𝜀𝜀𝑥𝑥 =
𝜎𝜎𝑥𝑥
𝐸𝐸 =

120.25
70 × 103 = 0.00172

𝛿𝛿 = 𝜀𝜀𝑥𝑥. 𝑙𝑙 = 0.00172(3 × 103) = 5.16 𝑚𝑚𝑚𝑚 

∆𝑎𝑎 = 𝜀𝜀𝑦𝑦 .𝑎𝑎 

𝜀𝜀𝑦𝑦 = −𝑣𝑣
𝜎𝜎𝑥𝑥
𝐸𝐸 = −

1
3

(120.25)
(70 × 103) = −0.00057 

∆𝑎𝑎 = −0.00057(30) = −0.0171 𝑚𝑚𝑚𝑚 

Change in volume (ΔV)=final volume – initial volume 

δ

l

Δd/2Δd/2
d

P

x

y
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∆𝑉𝑉 = �(30 − 0.0171)2 �
𝜋𝜋
4�

(3000 + 5.16)� − �(30)2 �
𝜋𝜋
4�

(3000)� = 1226.5 𝑚𝑚𝑚𝑚3 

Example (6.6): Find a single force in x –direction that gives the same change in the 
direction parallel to x, for shown Figure (6.12). Take 𝑣𝑣 = 1

3�  and 𝐸𝐸 = 70 𝐺𝐺𝑃𝑃𝑀𝑀. 

Figure (6.12) 

Solution: 

𝜀𝜀𝑥𝑥 =
𝜎𝜎𝑥𝑥
𝐸𝐸 − 𝑣𝑣

𝜎𝜎𝑦𝑦
𝐸𝐸 − 𝑣𝑣

𝜎𝜎𝑧𝑧
𝐸𝐸

𝜎𝜎𝑥𝑥 =
240 × 103

50(100) = 48 𝑀𝑀𝑃𝑃𝑀𝑀 

𝜎𝜎𝑦𝑦 =
180 × 103

50(75) = 48 𝑀𝑀𝑃𝑃𝑀𝑀 

𝜎𝜎𝑧𝑧 =
200 × 103

75(100) = 26.67 𝑀𝑀𝑃𝑃𝑀𝑀 

𝜀𝜀𝑥𝑥 =
48

70 × 103 −
1
3

48
(70 × 103)−

1
3

26.67
(70 × 103) = 3.302 × 10−4 

Uniaxial stress state is: 

𝜀𝜀𝑥𝑥 =
𝜎𝜎𝑥𝑥
𝐸𝐸

z

x

y 𝟏𝟏𝟏𝟏𝟎𝟎 𝒌𝒌𝒌𝒌 

𝟐𝟐𝟐𝟐𝟎𝟎 𝒌𝒌𝒌𝒌 𝟐𝟐𝟐𝟐𝟎𝟎 𝒌𝒌𝒌𝒌 

𝟐𝟐𝟎𝟎𝟎𝟎 𝒌𝒌𝒌𝒌 

𝟐𝟐𝟎𝟎𝟎𝟎 𝒌𝒌𝒌𝒌 

𝟏𝟏𝟏𝟏𝟎𝟎 𝒌𝒌𝒌𝒌 

𝟕𝟕𝟕𝟕 𝒎𝒎𝒎𝒎 

𝟏𝟏𝟎𝟎
𝟎𝟎 
𝒎𝒎
𝒎𝒎
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3.302 × 10−4 =

𝑃𝑃
50(100)
70 × 103

→ 𝑃𝑃 = 115.57 × 103 𝑘𝑘 

𝑜𝑜𝑜𝑜       𝑃𝑃 = 115.57 𝑘𝑘𝑘𝑘 

Example (6.7): A uniform bar of length ( l ), cross – sectional area ( A ), and unit mass ( 
ρ ) is suspended vertically from one end as shown in Figure (6.13). Show that its total 

elongation is (𝛿𝛿 = 𝜌𝜌𝜌𝜌𝑙𝑙2
2𝐸𝐸� ). If the total mass of the bar is ( M ), show also that (𝛿𝛿 =

𝑀𝑀𝜌𝜌𝑙𝑙
2𝐸𝐸𝐴𝐴� ).

Figure (6.13) 

Solution: 

𝜌𝜌(𝑥𝑥) = 𝑊𝑊(𝑥𝑥) = 𝛾𝛾.𝑉𝑉𝑜𝑜𝑙𝑙. = 𝜌𝜌(𝜌𝜌)(𝐴𝐴)(𝑥𝑥) 

𝛿𝛿 = �
𝜌𝜌(𝑥𝑥)

𝐸𝐸𝐴𝐴 𝑎𝑎𝑥𝑥 = �
𝜌𝜌(𝜌𝜌)(𝐴𝐴)
𝐸𝐸𝐴𝐴 𝑎𝑎𝑥𝑥 =

𝜌𝜌(𝜌𝜌)
𝐸𝐸

𝑙𝑙

0
�
𝑥𝑥2

2 �0

𝑙𝑙

=
𝜌𝜌𝜌𝜌𝑙𝑙2

2𝐸𝐸

𝑙𝑙

0

Total Mass= M , let total weight= M.g.l 

𝑢𝑢𝑖𝑖𝑖𝑖𝑢𝑢 𝑤𝑤𝑇𝑇𝑖𝑖𝜌𝜌ℎ𝑢𝑢 𝑊𝑊(𝑥𝑥) =
𝑀𝑀.𝜌𝜌
𝑙𝑙 (𝑥𝑥) 

z 

x

y

𝑷𝑷 𝑷𝑷 

𝟕𝟕𝟕𝟕 𝒎𝒎𝒎𝒎 

𝟏𝟏𝟎𝟎
𝟎𝟎 
𝒎𝒎
𝒎𝒎

 

l

x

(x)
W
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𝛿𝛿 = �
𝑀𝑀.𝜌𝜌
𝑙𝑙
𝐸𝐸𝐴𝐴 (𝑥𝑥)𝑎𝑎𝑥𝑥 = �

𝑀𝑀.𝜌𝜌
𝐸𝐸𝐴𝐴(𝑙𝑙) (𝑥𝑥)𝑎𝑎𝑥𝑥
𝑙𝑙

0

𝑙𝑙

0
 

𝛿𝛿 =
𝑀𝑀.𝜌𝜌
𝐸𝐸𝐴𝐴(𝑙𝑙) �

𝑥𝑥2

2 �0

𝑙𝑙

=
𝑀𝑀.𝜌𝜌(𝑙𝑙)

2𝐸𝐸𝐴𝐴

Example (6.8): The rigid bars shown in Figure (6.14) are separated by a roller at point 
(C) and pinned at point (A) and (D). A steel rod at point (B) helps support the load of (50
kN). Compute the vertical displacement of the roller at point (C).

Figure (6.14) 

Solution: 

𝛿𝛿𝐶𝐶
4.5 =

𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝐶𝐶
3 → 𝛿𝛿𝐶𝐶 =

4.5
3 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝐶𝐶 

Bar CD as F.B.D:

↻ ∑𝑀𝑀𝐶𝐶 = 0 →  𝑅𝑅𝐶𝐶(4) = 50(2) → 𝑅𝑅𝐶𝐶
= 25 𝑘𝑘𝑘𝑘 ↑ 

Bar ABC as F.B.D:  

↻ ∑𝑀𝑀𝐴𝐴 = 0 →  𝑅𝑅𝐶𝐶(4.5) = 𝑇𝑇(3) → 𝑇𝑇
= 37.5 𝑘𝑘𝑘𝑘 ↑ 

C D
BA

3 m 1.5 m 2 m 2 m

50 kN
2

N/m 
9

10xE=200 2
mm A=300 L=3 m

C D
BA

3 m 1.5 m 2 m 2 m

cable
 δ

C
 δ

C D

50 kN

C
R D

R
2 m 2 m

BA

A
R

C 

C
R

T

3 m 1.5 m
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𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝐶𝐶
𝑃𝑃𝑙𝑙
𝐸𝐸𝐴𝐴 =

37.5 × 103

200 × 103(300) = 1.875 𝑚𝑚𝑚𝑚 

𝛿𝛿𝐶𝐶 =
4.5
3 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝐶𝐶 =

4.5
3

(1.875) = 2.813 𝑚𝑚𝑚𝑚 

Example (6.9): A rod is composed of three segments and carries the axial loads as shown 
in Figure (6.15). Determine the stress in each material if the walls are rigid. 

Figure (6.15) 

Solution: 

 

From equilibrium: 

𝑅𝑅𝐴𝐴 + 𝑅𝑅𝐵𝐵 = 𝑃𝑃1 + 𝑃𝑃2   → 𝑅𝑅𝐴𝐴 + 𝑅𝑅𝐵𝐵 = 170  … … … . … (1) 

From compatibility: 

B 
A

300 mm

=120 kN
1

P =50 kN
2

P

400 mm600 mm

Bronze
2

mmA=2400 
E=83 GPa

Aluminum
2

A=1200 mm
E=70 GPa

Steel
2

A=600 mm
E=200 GPa

A
R B

R

A

=50 kN
2

P

A
R

A
N=R

=120 kN
1

P A
R –N=120 

=120 kN
1

P A
R –N=170 

A
R

A
R
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𝑅𝑅𝐴𝐴 × 103(600)
83 × 103(2400) +

(120− 𝑅𝑅𝐴𝐴) × 103(400)
70 × 103(1200) +

(170− 𝑅𝑅𝐴𝐴) × 103(300)
83 × 103(600) = 0 

→ 𝑅𝑅𝐴𝐴 = 96.99 ≅ 97 𝑘𝑘𝑘𝑘

Sub. in Equ.(1),get: 

𝑅𝑅𝐴𝐴 + 𝑅𝑅𝐵𝐵 = 170 → 𝑅𝑅𝐵𝐵 = 170 − 97 = 73 𝑘𝑘𝑘𝑘 

𝜎𝜎𝐵𝐵𝐵𝐵. =
𝑃𝑃
𝐴𝐴 =

97 × 103

2400 = 40.42 𝑀𝑀𝑃𝑃𝑀𝑀 

𝜎𝜎𝐴𝐴𝑙𝑙. =
𝑃𝑃
𝐴𝐴 =

(120− 97) × 103

1200 = 19.17 𝑀𝑀𝑃𝑃𝑀𝑀 

𝜎𝜎𝑆𝑆𝑆𝑆. =
𝑃𝑃
𝐴𝐴 =

73 × 103

600 = 121.67 𝑀𝑀𝑃𝑃𝑀𝑀 
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