Subject: Strength of Materials
Lecturer: M.Sc Murtadha Mohsen Al-Masoudy
E-mail: Murtadha Almasoody@mustaqbalcollege.edu.iq

Al-Mustaqbal University College Air Conditioning and Refrigeration Techniques Engineering Department

Strength of Materials

Second Stage

M.Sc Murtadha Mohsen Al-Masoudy

Shearing Stresses in Beams

Consider a small portion ABDC of a length (dx) of a beam with uniformly distributed load as shown in Figure (5.13).

- The intensity of bending stress across AB at a distance (y) from N.A. is:

$$
\sigma=\frac{M y}{I}
$$

Similarly,

- The intensity of bending stress across CD at a distance (y) from N.A. is:

$$
\sigma+d \sigma=\frac{(M+d M) y}{I}
$$

Knowing that the force acting across AB is:

$$
V=\text { Stress } \times \text { Area }=\sigma(d A)=\frac{M}{I}(y)(d A)
$$

- Similarly, the force acting across CD is:

$$
V+d V=(\sigma+d \sigma)(d A)=\frac{(M+d M)}{I}(y)(d A)
$$

- Net unbalanced force on the strip is:

$$
d V=\frac{(M+d M)}{I}(y)(d A)-\frac{M}{I}(y)(d A)=\frac{d M}{I}(y)(d A)
$$

- The total unbalanced force above N.A may be found out by integrating the last equation between (0 to $\mathrm{d} / 2$), get:

$$
\int_{0}^{d / 2} \frac{d M}{I}(y)(d A) d y=\frac{d M}{I} \int_{0}^{d / 2} y(d A) d y=\frac{d M}{I}(A)(\bar{y})
$$

Where A= Area of the beam above N.A., and
$\bar{y}=$ Distance between the center of gravity of the area (A) and N.A.
Knowing that the intensity of shear stress is:

$$
\tau=\frac{\text { Total Force }}{\text { Area }}=\frac{\frac{d M}{I}(A)(\bar{y})}{b(d x)}=\frac{d M}{d x} \times \frac{A(\bar{y})}{I b}
$$

Substituting $\frac{d M}{d x}=V$, and let $A(\bar{y})=Q$, then:

$$
\tau=\frac{V Q}{I b}
$$

Distribution of Shearing Stress over a Section

- Rectangular Section:

$$
\begin{gathered}
\begin{aligned}
& Q_{y}= b\left(\frac{h}{2}-y\right)\left(\frac{\frac{h}{2}-y}{2}+y\right) \\
&= b\left(\frac{h}{2}-y\right)\left(\frac{h}{4}-\frac{h}{2}+y\right) \\
&= \frac{b}{2}\left(\frac{h}{2}-y\right)\left(\frac{h}{2}+y\right) \\
& \therefore Q_{y}=\frac{b}{2}\left(\frac{h^{2}}{4}-y^{2}\right) \\
& \tau_{y}=\frac{V Q}{I b}= \frac{V \cdot \frac{b}{2}\left(\frac{h^{2}}{4}-y^{2}\right)}{I b}=\frac{V}{2 I}\left(\frac{h^{2}}{4}-y^{2}\right) \\
& \text { at } y=0 \rightarrow \tau_{y}=\tau_{\max }=\frac{V h^{2}}{8 I}=\frac{V h^{2}}{8 \frac{b h^{3}}{12}}=\frac{12}{8} \frac{V}{b h} \\
& \therefore \tau_{y}=\tau_{\max }=\frac{3}{2} \frac{V}{b h}
\end{aligned}
\end{gathered}
$$

Examples

Example (5.8): The T-section shown in Figure (5.14), is the cross section of a beam formed by joining two rectangular pieces of wood together. The beam is subjected to maximum shearing force of (60 kN). Show that the N.A is $(34 \mathrm{~mm})$ from top and that $\mathrm{I}_{\mathrm{N} . \mathrm{A}}=10.57 \mathrm{x} 106 \mathrm{~mm}^{4}$. Using these values, determine the shearing stress:
a) At the N.A, and
b) At the junction between the two pieces of wood.

Figure (5.14)

Solution:

$$
\begin{aligned}
& \bar{y}= \frac{\sum a_{i} y_{i}}{\sum a_{i}}=\frac{200(40)(20)+100(20)(50+40)}{200(40)+100(20)}=34 \mathrm{~mm} \\
& I_{N . A}=\left[\frac{200(40)^{3}}{12}+200(40)(34-20)^{2}\right] \\
&+\left[\frac{20(100)^{3}}{12}+20(100)(90-34)^{2}\right]=10.57 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

a) $Q=34(200)\left(\frac{34}{2}\right)=115600 \mathrm{~mm}^{3}$

$$
\tau=\frac{V Q}{I b}=\frac{60 \times 10^{3}(115600)}{10.57 \times 10^{6}(200)}=3.28 \mathrm{MPa}
$$

b) $Q=40(200)(34-20)=112000 \mathrm{~mm}^{3}$

$$
\tau=\frac{V Q}{I b}=\frac{60 \times 10^{3}(112000)}{10.57 \times 10^{6}(20)}=31.78 \mathrm{MPa}
$$

Or

$$
\tau=\frac{V Q}{I b}=\frac{60 \times 10^{3}(112000)}{10.57 \times 10^{6}(200)}=3.18 \mathrm{MPa}
$$

Example (5.9): Draw the distribution of shear stress of I - beam shown in Figure (5.15) at critical sections for indicated layers.

Figure (5.15)

Solution:

$$
\begin{gathered}
V_{\max }=250 \mathrm{kN} \\
I_{N . A}=\frac{150(300)^{3}}{12}-2\left[\frac{69(276)^{3}}{12}\right]=95.7 \times 10^{6} \mathrm{~mm}^{4}
\end{gathered}
$$

- Layer 1:

$$
Q=0 \text { and } b=150 \mathrm{~mm} \rightarrow \tau=0
$$

- Layer 2:

$$
\begin{gathered}
Q=150(12)\left(\frac{276}{2}+\frac{12}{2}\right)=259200 \mathrm{~mm}^{3} \\
\tau=\frac{250 \times 10^{6}(259200)}{95.7 \times 10^{6}(150)}=4.5 \mathrm{MPa}
\end{gathered}
$$

Or

$$
\tau=\frac{250 \times 10^{6}(259200)}{95.7 \times 10^{6}(12)}=56.4 \mathrm{MPa}
$$

- Layer 3:

$$
\begin{gathered}
Q=150(12)\left(\frac{276}{2}+\frac{12}{2}\right)+12(12)\left(\frac{276}{2}+\frac{12}{2}\right)=278208 \mathrm{~mm}^{3} \\
\tau=\frac{250 \times 10^{6}(278208)}{95.7 \times 10^{6}(12)}=60.5 \mathrm{MPa}
\end{gathered}
$$

- Layer 4:

$$
\begin{gathered}
Q=150(12)\left(\frac{276}{2}+\frac{12}{2}\right)+\left(\frac{276}{2}\right)(12)\left(\frac{276}{4}\right)=373464 \mathrm{~mm}^{3} \\
\tau=\frac{250 \times 10^{6}(373464)}{95.7 \times 10^{6}(12)}=81.3 \mathrm{MPa}
\end{gathered}
$$

