Strength of Materials

Q.1/ Overhanging beam shown in figure below, with ($\mathbf{(0 . 0 8}$) m wide, if the bending stress is not to exceed $(\mathbf{2 0} \boldsymbol{* 1 0} \mathbf{1 0}) \mathrm{Pa}$, determine the minimum height of the beam.

Q.2/ An aluminum shaft with a constant diameter of 50 mm is loaded by torques applied to gears attached to it as shown in figure below. Using $\mathrm{G}=28 \mathrm{GPa}$, determine the relative angle of twist of gear D relative to gear A .

Q.3/ A $50-\mathrm{mm}$ diameter bar is used as a simply supported beam 3 m long. Determine the largest uniformly distributed load that can be applied over the right twothirds of the beam if the flexural stress is limited to 50 MPa .
Q.4/ Find a single force in x-direction that gives the same change in the direction parallel to x, for shown figure below. Take $v=1 / 3$ and $E=70 \mathrm{GPa}$.

Q.5/ As shown in figure below, there is a gap between the Aluminum bar and the rigid slab that is supported by two Copper bars. At $\left(\mathbf{1 0}{ }^{\circ} \mathrm{C}\right),(\boldsymbol{\Delta}=\mathbf{0 . 1 8}) \mathrm{mm}$. Neglecting the mass of the slab, calculate the stress developed in each rod when the temperature in the assembly is increased to $(\mathbf{9 5})^{\circ} \mathrm{C}$. For each copper bar, $(\mathbf{A}=\mathbf{5 0 0}) \mathrm{mm}^{2},(\mathbf{E}=\mathbf{1 2 0}) \mathrm{GPa}$, and $(\boldsymbol{\alpha}=\mathbf{1 6 . 8}) \mu \mathrm{m} /\left(\mathrm{m}^{\circ}{ }^{\circ} \mathrm{C}\right)$. For the aluminum bar, $(\mathbf{A}=\mathbf{4 0 0}) \mathrm{mm}^{2},(\mathbf{E}=\mathbf{7 0}) \mathrm{GPa}$, and $(\boldsymbol{\alpha}=\mathbf{2 3 . 1}) \mu \mathrm{m} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$.
(10 Marks)

Q.6/ Overhanging beam shown in figure below, with ($\mathbf{0 . 0 8}$) m wide, if the bending stress is not to exceed $(\mathbf{2 0 * 1 0} \mathbf{1 0}) \mathrm{Pa}$, determine the minimum height of the beam.

Q.7/ A torque T is applied, as shown in figure below, to a solid shaft with built-in ends. Prove that the resisting torques at the walls are $\mathrm{T}_{1}=\mathrm{Tb} / \mathrm{L}$ and $\mathrm{T}_{2}=\mathrm{Ta} / \mathrm{L}$?

Q.8/ Determine the deformation of the steel rod shown in figure below under the given loads. $E=29 \times 10^{6}$ psi.

Q.9/ The simply supported beam in figure below has a rectangular cross section 100 mm wide and 200 mm high.

1. Compute the maximum bending stress in the beam.
2. Compute the bending stress at a point 3 m form support (A) that is 25 mm below the top of the beam.

Q.10/ Derive an expression to find the longitudinal and hoop stresses for the vessel shown in figure below. After then, find them if the internal pressure of 125 psi .

Practical Part

Q.1/ In compression test, discuses the shape of samples before and after the test?
Q.2/ In a Brinell hardness test, a 1500 kg load is pressed into a specimen using a 10 mm diameter hardened steel ball. The resulting indentation has a diameter of 3.2 mm . Determine the Brinell hardness number for the metal?
Q.3/ Enumerate the factors affect the result of impact test?
Q.4/ What are the aims of tensile test, illustrate the stress strain curve?
Q.5/ Explain in details the shear modulus (G)?
Q.6/ Explain with drawing the derivative of the following law:

$$
W=m \times g \times R(\cos \beta-\cos \alpha)
$$

