3.3 Equilibrium of Coplanar Parallel Force system

To achieve the equilibrium,
$\sum F_{i}=0$
$\sum M=0$
Only two unknowns can be determined

Example No. 1: Determine the reaction A and tension force at B to maintain the system in equilibrium.

Solution:

Draw F.B.D. for beam AB :
${ }^{+} \sum M_{A}=0$

$-250 \times 1.5-100 \times(4.5-1.5)+50 \times(9-1.5)+T_{B} \times(9-1.5)=0$
$T_{B}=40 N \downarrow$
$\uparrow^{+} \sum F_{y}=0$
$R_{A}-250+100-50-40=0 \quad \rightarrow \quad R_{A}=240 N \uparrow$

Example No. 2: The weight of the pulleys may be neglected and assuming the pulleys to be frictionless. Determine the force P necessary to maintain the system in equilibrium.

Solution:

Draw F.B.D. for pulleys system, since the pulleys are frictionless, the tension remains the same in the rope, thus $T_{1}=P$

at Pulleys A:

$\uparrow^{+} \sum F_{y}=0$
$T_{2}-P-P=0$
$T_{2}=2 P$
at Pulleys C:
$\uparrow^{+} \sum F_{y}=0$
$T_{2}+2 T_{1}-600=0$
$2 P+2 P=600$

$\therefore P=150 N$

Example No. 3: For the system of pulleys shown in Figure, determine the value of W so that the system to maintain equilibrium if value of P is 50 N . Neglect friction and the weights of the pulleys.

Solution:

Draw F.B.D. for pulleys system, since the pulleys are frictionless, the tension remains the same in the rope.
$\uparrow^{+} \sum F_{y}=0$
$3 P+3 P+3 P-W=0$
$W=9 P=9 \times 50=450 N$

Problem:

1. Determine the value of W if force $\mathrm{P}=100 \mathrm{~N}$ necessary to maintain the system in equilibrium. Neglect friction and the weights of the pulleys.

Answer: $W=400 \mathrm{~N}$
2. Determine the force P necessary to maintain the system in equilibrium. The weight of the pulleys may be neglected and assuming the pulleys to be frictionless.

Answer: $P=110 N$
3. The horizontal beam is supported by cables at its ends. Determine the required force of the cable at A and B so that if the beam remains in the horizontal position.

Answer: $T_{A}=466.67 \mathrm{~N} \uparrow, \quad T_{B}=133.33 N \uparrow$

