3.4 Equilibrium of Coplanar General Force system

There are three equilibrium conditions that can be used for non-concurrent, nonparallel force system.

To achieve the equilibrium:
$\sum F_{x}=0$
$\sum F_{y}=0$
$\sum M=0$
Three unknowns can be determined.

Example No. 1: A beam AB is supported in a horizontal position by a hinge A and a cable at C as shown in Figure. Compute the tension T in the cable and the reaction force at A .

Solution:

Draw F.B.D. for all beams

$200 \times 1+100 \times 5-T \times \frac{2}{\sqrt{5}} \times 3=0$
$T=260.87 \mathrm{~N}$ answer
$\uparrow^{+} \sum F_{y}=0$
$260.87 \times \frac{2}{\sqrt{5}}+A_{y}-200-100=0$
$A_{y}=66.67 \mathrm{~N} \uparrow$ answer
$\rightarrow^{+} \sum F_{x}=0$
$A_{x}-260.87 \times \frac{1}{\sqrt{5}}=0 \quad \Rightarrow \quad A_{x}=116.66 \mathrm{~N} \rightarrow$ answer
Example No. 2: Determine the values of the reactions at A, B, C, and D.

Solution:
Draw F.B.D. for all beams

At beam DC as F.B.D:
${ }^{+} \sum M_{D}=0$
$R_{C} \times 10-60 \times 14-190 \times 4=0$
$R_{C}=160 \mathrm{kN} \uparrow$ answer
$\rightarrow^{+} \sum F_{x}=0$
$D_{x}=0$ answer
$\uparrow^{+} \sum F_{y}=0$
$160+D_{y}-60-190=0$
$D_{y}=90 k N \quad \uparrow$ answer
At beam AB as F.B.D:
${ }^{+} \sum M_{A}=0$
$-R_{B} \times 10+400 \times 4+160 \times 14=0$
$R_{B}=384 k N \uparrow$ answer
$\rightarrow^{+} \sum F_{x}=0$
$A_{x}=0 \quad$ answer
$\uparrow^{+} \sum F_{y}=0$
$384+A_{y}-160-400=0$
$A_{y}=176 k N \quad \uparrow$ answer

Example No. 3: Determine the horizontal and vertical components of reaction on the member at the $\operatorname{pin} A$, and the normal reaction at B in Figure.

Solution:

Draw F.B.D. for all beams
${ }^{+} \sum M_{A}=0$
$750 \times 3+N_{B} \times \sin 30 \times 2-N_{B}$

$\times \cos 30 \times 6=0$
$N_{B}=536.21 \mathrm{~N}$ answer
$\rightarrow^{+} \sum F_{x}=0$
$A_{x}-536.21 \times \sin 30=0$
$A_{x}=268.1 \mathrm{~N} \rightarrow$ answer
$\uparrow^{+} \sum F_{y}=0$
$A_{y}-750+536.21 \times \cos 30=0$
$A_{y}=285.63 N \uparrow$ answer

Problem:

1. The uniform member in Figure weighs 420 N and has its center of gravity at G . Determine the tension in the cable and the reactions at the smooth surfaces at A and B.

Answer: $R_{A}=420 N \uparrow, T=420 N \rightarrow, R_{B}=420 N \leftarrow$
2. If the cable CB can sustain a maximum load of 1500 N before it fails, determine the critical loads if $F_{1}=2 F_{2}$. Also, what is the magnitude of the maximum reaction at pin A .

Answer: $F_{2}=724 N, \quad F_{1}=1450 N, A_{x}=1200 N \rightarrow, \quad A_{y}=1274 \mathrm{~N} \uparrow$
3. The beam shown in Figure is supported by a hinge at A and a roller on a 1 to 2 slope at B. Determine the resultant reactions at A and B.

Answer: $R_{B}=33.54 k N, A_{x}=15 k N \rightarrow, A_{y}=10 k N \uparrow$

