
1

Al-Mustaqbal University

College Of Engineering & Technology

Department of Computer Engineering Techniques
(Stage: 3)

Digital Control

Lecture 1

Introduction to Arduino

Dr.: Fanar Ali Joda

Arduino

 Analog Reference pin

 Digital Ground

 Digital Pins 2-13 – the digital pins on a board can be used for
general-purpose input and output via the pinMode(),
digitalRead(), and digitalWrite() commands. Each pin has an
internal pull-up resistor which can be turned on and off using
digitalWrite() (w/ a value of HIGH or LOW, respectively)

2

when the pin is configured as an input. The maximum current
per pin is 40 mA.

 Digital Pins 0-1/Serial In/Out – TX/RX- These pins cannot
be used for digital i/o (digitalRead and digitalWrite) if you
are also using serial communication (e.g. Serial.begin).

 Reset Button – S1

 In-circuit Serial Programmer

 Analog In Pins 0-5 – The analog input pins support 10-bit
analog-to-digital conversion (ADC) using the analogRead()
function. Most of the analog inputs can also be used as digital
pins: analog input 0 as digital pin 14 through analog input 5
as digital pin 19. Analog inputs 6 and 7 (present on the Mini
and BT) cannot be used as digital pins.

 Power and Ground Pins

 External Power Supply In (9-12VDC) – X1

 Toggles External Power and USB Power (place jumper on
two pins closest to desired supply) – SV1

 USB (used for uploading sketches to the board and for serial
communication between the board and the computer; can be
used to power the board)

 Arduino Uno has a low drop-out voltage regulator. It
dissipates less power in the form of heat.

Arduino Integrated Development Environment (IDE)

Arduino IDE allows you to write programs and upload them on
your board. It is available as an online tool that allows you to save
designs on the cloud. However, it is also available as an offline
tool. The boards work out of the box with the web editor.

3

The online IDE automatically detects the board and the port it is
connected to without having to select the ports individually. You
can use their Forum to discuss any technical issue with coding or
board.

Different Types of Arduino Boards

Every board that Arduino makes has a separate set of features. As
per the features and characteristics, we have classified this
development board into 3 categories i.e. entry-level boards,
enhanced-level boards, and IoT boards

4

Commonly Available Arduino Shields

A shield is basically a pre-built circuit board that fits on top of the
board and provides additional capabilities like controlling motors,
connecting to the internet, providing cellular or other wireless
communication, controlling an LCD screen, and much more.

5

 Ethernet Shield

 GSM Shield 2

 WiFi Shield 101

 WiFi Shield

 Wireless SD Shield

6

Structure of Arduino program

The basic structure of the Arduino programming language is fairly
simple and runs in at least two parts. These two required parts, or
functions, enclose blocks of statements.

void setup()

{

 statements;

}

void loop()

{

 statements;

}

Where setup() is the preparation, loop() is the execution. Both
functions are required for the program to work.

The setup function should follow the declaration of any variables
at the very beginning of the program. It is the first function to run
n the program, is run only once, and is used to set pinMode or
initialize serial communication.

The loop function follows next and includes the code to be
executed continuously – reading inputs, triggering outputs, etc.
This function is the core of all Arduino programs and does the
bulk of the work.

setup()

7

The setup() function is called once when your program starts. Use
it to initialize pin modes, or begin serial. It must be included in a
program even if there are no statements to run.

void setup()

{

 pinMode(pin, OUTPUT); // sets the 'pin' as output

}

loop()

After calling the setup() function, the loop() function does
precisely what its name suggests, and loops consecutively,
allowing the program to change, respond, and control the Arduino
board.

void loop()

{

 digitalWrite(pin, HIGH); // turns 'pin' on

 delay(1000); // pauses for one second

 digitalWrite(pin, LOW); // turns 'pin' off

 delay(1000); // pauses for one second

}

Functions

A function is a block of code that has a name and a block of
statements that are executed when the function is called. The

8

functions void setup() and void loop() have already been discussed
and other built-in functions will be discussed later.

Custom functions can be written to perform repetitive tasks and
reduce clutter in a program. Functions are declared by first
declaring the function type. This is the type of value to be returned
by the function such as 'int' for an integer type function. If no value
is to be returned the function type would be void. After type,
declare the name given to the function and in parenthesis any
parameters being passed to the function.

type functionName(parameters)

{

 statements;

}

The following integer type function delayVal() is used to set a
delay value in a program by reading the value of a potentiometer.
It first declares a local variable v, sets v to the value of the
potentiometer which gives a number between 0-1023, then divides
that value by 4 for a final value between 0-255, and finally returns
that value back to the main program.

int delayVal()

{

 int v; // create temporary variable 'v'

 v = analogRead(pot); // read potentiometer value

 v /= 4; // converts 0-1023 to 0-255

 return v; // return final value

9

}

{} curly braces

Curly braces (also referred to as just "braces" or "curly brackets")
define the beginning and end of function blocks and statement
blocks such as the void loop() function and the for and if
statements.

type function()

{

 statements;

}

An opening curly brace { must always be followed by a closing
curly brace }. This is often referred to as the braces being
balanced. Unbalanced braces can often lead to cryptic,
impenetrable compiler errors that can sometimes be hard to track
down in a large program.

The Arduino environment includes a convenient feature to check
the balance of curly braces. Just select a brace, or even click the
insertion point immediately following a brace, and its logical
companion will be highlighted.

; Semicolon

A semicolon must be used to end a statement and separate
elements of the program.

A semicolon is also used to separate elements in a for loop.

10

 int x = 13; // declares variable 'x' as the integer 13

Note: Forgetting to end a line in a semicolon will result in a
compiler error. The error text may be obvious, and refer to a
missing semicolon, or it may not. If an impenetrable or seemingly
illogical compiler error comes up, one of the first things to check is
a missing semicolon, near the line where the compiler complained.

/*… */ block comments

Block comments, or multi-line comments, are areas of text ignored
by the program and are used for large text descriptions of code or
comments that help others understand parts of the program. They
begin with /* and end with */ and can span multiple lines.

 /* this is an enclosed block comment

 don’t forget the closing comment -

 they have to be balanced!

*/

Because comments are ignored by the program and take no
memory space they should be used generously and can also be
used to “comment out” blocks of code for debugging purposes.

Note: While it is possible to enclose single line comments within a
block comment, enclosing a second block comment is not allowed.

11

// line comments

Single line comments begin with // and end with the next line of
code. Like block comments, they are ignored by the program and
take no memory space.

// this is a single line comment

Single line comments are often used after a valid statement to
provide more information about what the statement accomplishes
or to provide a future reminder.

