

Microencapsulation

Mohammed Albarki, BSPharm, PhD

Cool of the second seco

Microencapsulation

- It is a means of applying a relatively thin coating to small particles of solids or droplets of liquids.
- Advantages of microencapsulation:
 - 1. The smallness of the particles, so, the active ingredient can be widely distributed throughout the GIT, thus improving drug absorption.
 - 2. taste-masking
 - 3. Formulation of tablets or capsules containing incompatible ingredients.
- Disadvantages or challenges:
 - 1. No single microencapsulation process is useful for all materials.
 - 2. Difficulties, such as incomplete or discontinuous coating, and inadequate stability of sensitive drugs.

MUC- College of Pharmacy- Industrial Pharmacy II- 5th stage – Fall 2023

Microencapsulation

Core and Coating materials

- The **core** material (the drug particles) can be liquid or solid in nature.
- The solid core material can be an active ingredient alone or as a mixture with diluents and other excipients.
- The **coating material** should be:
- 1. Capable of **forming a film** that is cohesive with the core material.
- 2. Be chemically **compatible** and noncreative with the core material.

Examples of	Characteristic	Purpose of	Final Dosage
Core Material	Property	Encapsulation	Form
Acetaminophen	Slightly water	Taste masking	Tablet
	soluble solid		
Aspirin	Slightly water	Taste masking, sustained	Dry powder
	soluble solid	release, reduced gastric	
		irritation.	
Islet of Langerhans	Viable cells	Replacement therapy for	Injection
		diabetic patients	
Isosorbide dinitrate	Water soluble	Sustained release	Capsule
	solid		
Menthol, methyl	Volatile solution	Reduction of volatility;	Lotion
Salicylate, camphor		sustained release	
mixture			
Vitamin A	Nonvolatile	Stabilization to prevent	Dry powder
palmitate	liquid	oxidation	

Air suspension: (for solid core only) This model of a solid core of

• This method consists of suspending the solid material in the air and spraying the coating material with the air.

• However, this process generally is considered to be suitable only for the encapsulation of **solid core** materials.

- 2. Pan Coating: (only for solids)
 - In this method, the coating is applied as an atomized spray to the desired *solid* core material in the coating pan. To remove the coating solvent, warm air is used in a process similar to that of tablet coating.

3- Solvent Evaporation

- The core material is dissolved **or** dispersed in a coating polymer solution (contains a volatile solvent for polymer ((solution 1)= core material (drug) + polymer + solvent)).
- Solution 1 is added with agitation to solution 2 which is a solvent that is immiscible with solution 1 (and coating polymer is insoluble in this solvent).
- The polymer will shrink on itself and **coat** the core material.
- Note: if the core material (drug) was soluble in **solution 1** it will form a matrix-type microcapsule (mixture) with polymer (not coating)
- Then solvent 1 is removed by evaporation with or without the aid of heat.
- Note: The resulting microcapsules can be used in suspension form or isolated as a powder *MUC- College of Pharmacy-Industrial Pharmacy II- 5th stage Fall 2023*

Coating Matrix Type Solvent 2

Microencapsulation

Solvent 1

- 2. Spraying the core-coating mixture (drug + polymer) into certain environmental conditions, whereby rapid solidification of the coating is achieved.
- The principal **<u>difference</u>** between the two methods is the means by which the solidification is achieved.
- Coating solidification in the case of **spray drying** is achieved by rapid evaporation (heating) of a solvent in which the coating material is dissolved.
- Coating solidification in **spray congealing** methods is accomplished by thermally congealing (cooling) of a molten coating material.

- Spray drying and spray congealing:
- These methods can be used for both **liquid and solid** drugs. Because of the similarity of these two processes, they are discussed together.
- Both involve:

1.

- In practice, microencapsulation by spray drying is done by dispersing a core material in a coating solution, **in which the core material is insoluble,** and then atomizing the mixture into an air stream.
- The air (**hot air**) supplies the heat of vaporization required to remove the solvent from the coating material, thus forming the microencapsulated product.
- The equipment used for this purpose is the usual spray dryer.

Feed Pump Liquid HEPA Atomizing Gas HEPA Air Heater Fan Drying Chamber Drying Chamber Process Fines Filter Product

- Microencapsulation by spray congealing can be accomplished with a spray drying device.
- Coating solidification (and microencapsulation) is accomplished by spraying the hot mixture into cool air.
- Waxes, fatty acids, and certain polymers which are **solids at room temperature** but meltable at high temperatures, are applicable to the spray congealing technique.

• To form the three phases, polymer is **dissolved** in

- liquid manufacturing phase (**phase 1+ phase 2**), then the core material is **dispersed** into that liquid (**phase 3**).
 - Until this point we have **two phases** (polymer + vehicle) and dispersed core material.

Coacervation-Phase separation:

- It can be used for **both liquid and solid** drugs. It consists of three steps.
- Step 1: Formation of three immiscible phases:
- Which are the
 - Liquid manufacturing vehicle phase.
 - Coating material phase (polymer).
 - Core material phase

Step 1 (continue)

- To form three immiscible phases: the solubility of the polymer (the coating material) in the solvent is altered to form a third immiscible phase.
- This polymer-rich phase will contain **most** of the polymer in the solution and it is called as a **coacervate**.
- The process of coacervation-phase separation (phasing out the polymer) is formed by utilizing one of the methods:
- by changing the **temperature** of the polymer solution.
- or by adding salt.
- or a **nonsolvent**.
- or adding another polymer.

12

- **Step 2**: Deposition of the coating.
- It consists of depositing the liquid coating material on the core material under controlled agitation by: for example further change in temperature.
- Deposition of the liquid polymer coating around the core material occurs if the coating polymer is adsorbed at the **interface between the core material and the immiscible solvent phase**, and this adsorption phenomenon is a **prerequisite** to effective coating.
- **Step 3**: Rigidizing the coating.
- It involves rigidizing the coating, usually by thermal techniques, to form the microcapsules.

ig. 15.10: General phase diagram-coacervationduced thermally

- The following example illustrates this technique.
- Ethyl cellulose (a water-insoluble coating polymer) is applied to N-acetyl-paminophenol (paracetamol) powder (core material) by utilizing the temperature characteristics of the polymer in the cyclohexane (solvent).
- Ethyl cellulose is insoluble in cyclohexane at **room temperature**, but it is soluble at elevated temperatures. The ethyl cellulose and cyclohexane mixture is **heated** to form a homogeneous (one-phase) solution.
- The aminophenol is **dispersed** (as insoluble powder) in the solution with stirring.
- Allowing the mixture to cool with continuous stirring results in coacervationphase separation of the ethyl cellulose from cyclohexane and microencapsulate the core material.
- Allowing the mixture to cool further to room temperature causes gelation and solidification of the coating.
- The microencapsulated product can then be collected from the cyclohexane by filtration or centrifugation.