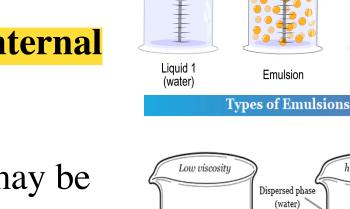
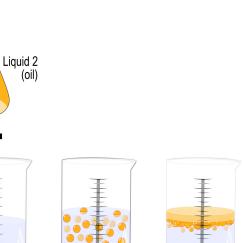



# **Emulsions (Biphasic Liquids)**

Mohammed Albarki, BSPharm, PhD.

### Introduction


- Emulsions are water, oil, and emulsifying agents.
- An emulsion is a (**thermodynamically unstable**) mixture of **two immiscible liquids**, one of which is finely subdivided and uniformly distributed as droplets (the **dispersed** phase) throughout the other (the **continuous** phase), stabilized by an emulsifier.
- In emulsion terminology, the **dispersed phase** is the **internal phase**, and the **dispersion medium** is the **external** or **continuous** phase.
- The viscosity of emulsions can vary greatly and they may be prepared as liquids or semisolids (cream).
- Liquid emulsions may be employed orally, topically, or parenterally while semisolid emulsions employed topically.




Dispersed phase

Continuous phase

(water) Continuous phase (oil)





Immiscible

liauids

high viscosit

Water in oil



### Classification

#### • Oil-in-water (o/w)

- Suitable for oral, parenteral, and topical routes of delivery
- Propofol emulsion (Diprivan®) intravenous anesthetic
- Intralipid<sup>®</sup> -Lipid Emulsion for parenteral nutrition
- Miscible with water and aqueous diluents as water is the continuous phase
- Water-in-oil (w/o)
- Exclusively for external application
- For example: Cold Cream
- Not miscible with aqueous diluents as **oil** is the continuous phase

400 NDC 0338-0519-13

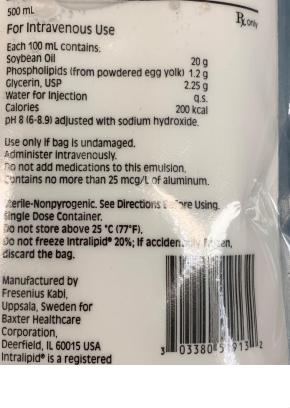
500 mL

sovbean Oil

**Glycerin**, USP

Water for Injection Calories

discard the bag.


Manufactured by

Baxter Healthcare Corporation.

Fresenius Kabi

Intralipid<sup>®</sup> 20%

A 20% I.V. Fat Emulsion



500 ml



## **Pharmaceutical Emulsions**



#### How to Identify Type of Emulsion

- Emulsion type will depend mainly on:
  - 1. The volume ratio of the oil and aqueous phases and
  - 2. The types of emulsion stabilizers (emulsifiers) present
- The phase that is present in greater concentration generally tends to be the external phase
- However, an emulsifier that favors a particular type of emulsion (o/w or w/o) can overcome an unfavorable ratio of oily and aqueous phases
- **Bancroft's Rule** "The phase in which an emulsifier is more soluble constitutes the continuous (external) phase"



#### Advantages

- 1. Allows for the preparation of a relatively stable mixture of two immiscible liquids. This facilitates the **delivery of oily or oil-soluble drugs** 
  - Administration of a non-aqueous liquid phase (an "oil") as microscopic droplets dispersed in an aqueous medium
- 2. Taste-masking(if the drug is oil-soluble)
- 3. Dispersion of the drug-containing phase into **microscopic** globules may aid in **improved bioavailability**
- 4. Enables intravenous administration of an oil (e.g., parenteral nutrition or propofol)
- 5. External applications such as creams, lotions, etc.

#### **Pharmaceutical Emulsions: Examples**



| Emulsion                                        | Therapeutic category                                  | Route of administration |
|-------------------------------------------------|-------------------------------------------------------|-------------------------|
| Lidocaine and Prilocaine Cream<br>(EMLA®)       | TopicalAnesthetic                                     | Topical                 |
| Restasis(Cyclosporin ophthalmic emulsion)       | For chronic dry eye<br>(increases tear<br>production) | Ophthalmic              |
| Propofol injectable emulsion<br>USP (Diprivan®) | Anesthetic                                            | Intravenous             |
| Mineral Oil emulsion USP                        | Laxative                                              | Oral                    |
| Diazepam intravenous emulsion<br>(Diazemuls®)   | Sedative<br>Anti-anxiety                              | Intravenous             |





#### *Not for save*

MUC- College of Pharmacy- Industrial Pharmacy II - 5<sup>th</sup> stage. - Fall 2023

**Emulsion Dosage Form** 

#### **Critical Emulsion Attributes**



#### **Desirable product properties**

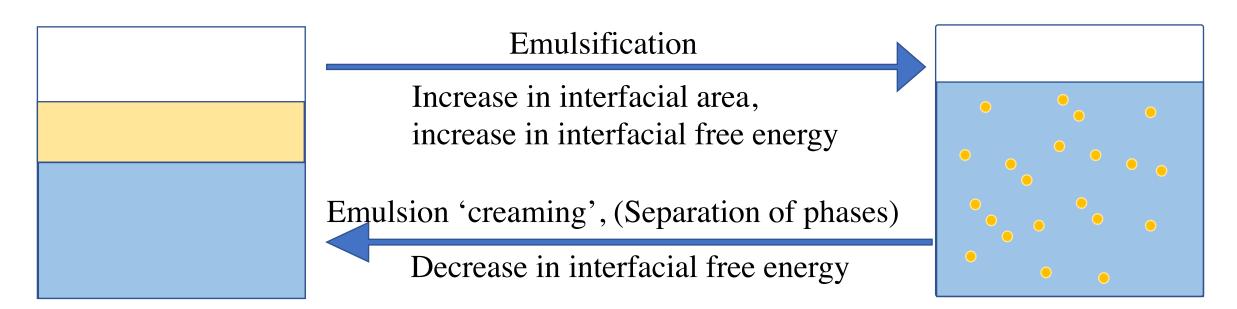
- The droplet size of the dispersed phase (oil or water) should remain fairly constant during undisturbed standing for long periods (minimal coalescence of droplets)
- 2. Consistency should be appropriate for the intended use (pourable/syringeable/ spreadable etc.)
- 3. If liquid emulsions exhibit some 'creaming' on storage, the oil phase should be readily and uniformly re-dispersed upon shaking (**re-dispersible**).



#### **Stokes Law**

- Defines the rate of **upward** movement of oil droplets dispersed in an aqueous medium or **downward** movement of water droplets dispersed in an oil phase
- Note: Stokes law is strictly valid only for **uniform, spherical droplets in a dilute emulsion.**

$$\frac{dx}{dt} = \frac{D^2 (\rho_{(internal \, phase)} - \rho_{(continous \, phase)}) * g_{18\eta}}{18\eta}$$


- Where:
- $\frac{dx}{dt}$  = sedimentation rate in (cm/s); D= particle diameter (cm)
- $\rho$  = density in g/ml ; g= gravity constant (980.7 cm. s<sup>-2</sup>)
- $\eta$  = medium viscosity in g. cm<sup>-1</sup>. s<sup>-1</sup> or (poise)
- When  $\rho_{ip} < \rho_{cp}$ : o/w emulsion;  $(\rho_{ip} \rho_{cp}) = -ve$ , droplets rise
- When  $\rho_{ip} > \rho_{cp}$ : w/o emulsion;  $(\rho_{ip} \rho_{cp}) = +ve$ , droplets settle



#### **Creaming of an Emulsion**

- The **smaller** the globules of the disperse phase, the **slower** will be the rate of creaming in an emulsion. The size of these globules can also affect the viscosity of the product, i.e., the smaller the globules, the higher viscosity.
- However the smaller the droplet the higher the thermodynamic instability.

 $\Delta G = \gamma \Delta A$ 





- In many cases simple blending of the oil and water phases with a suitable emulgent system.
- The initial blending may be accomplished on a small scale by the use of a **pestle and mortar** or by using a mixer fitted with an impeller type of agitator, the size and type of which will depend primarily on the **volume and viscosity** of the product.
- Colloid mills are also suitable for the preparation of emulsions. The extensive shearing of the product produces emulsions of very small globule size.





**Emulsion Dosage Form** 

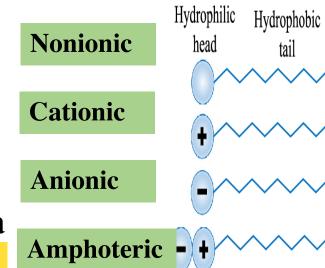


- In this form, the presence of a flavor in the aqueous phase will mask any unpleasant taste.
- Emulsions for **intravenous** administration **must** also be of the o/w type, although intramuscular injections can also be formulated as w/o products if a water-soluble drug is required for depot therapy (S.R).
- Emulsions are most widely used for external applications. Semisolid emulsions are termed creams and more fluidcontaining preparations are called either lotions or liniments (liniments are intended for skin massage).



• Fat or oil drugs for **oral** administration are formulated as o/w emulsions.




### **Emulsifying Agents**

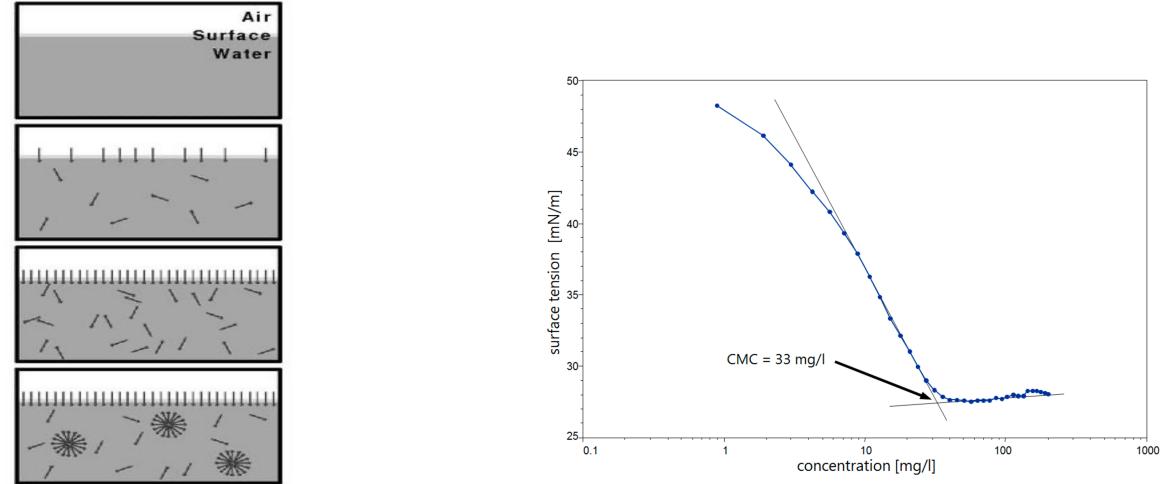
- Can be divided into **three** categories: surface active, hydrophilic colloids, and finely-divided solids.
- Only the surface active agent is considered as a **main** emulsifying agent. The other two are considered auxiliary emulsifiers.
- 1. They **reduce interfacial** tension (thermodynamic stabilization) and/or
- 2. Act as **barriers** to prevent/reduce droplet coalescence since they adsorb at the interface (interfacial film formation).
- 3. They can also act by **electrical repulsion** or electrical barriers for agents that possess a surface charge such as cationic surfactants.

### **Emulsifying Agents**

#### Surface Active Agents or "Surfactants"

- Based on their structure, emulsifiers may be described as molecules comprising **both** hydrophilic and hydrophobic portions
- Adsorbed at the Oil-water interface and form monomolecular films. They act by:
- 1. They **reduce** the interfacial tension between two liquids. A reduction in attractive forces of dispersed liquid for its own molecules lowers the interfacial free energy of the system and prevents coalescence or phase separation. (**this action is for surfactants only**)
- 2. They may also prevent the coalescence of droplets by **forming a coherent** monolayer at the interface of the droplets. (**this action is similar to the other two and it is more important in surfactant action**)
- 3. If the emulsifier is **ionized**, it confers a surface charge to the droplet and might prevent coalescence due to repulsive forces between droplets (**not all surfactants have this action**)

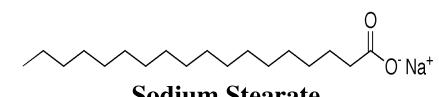



ige Form

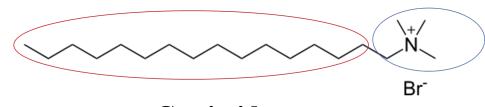







• Not for save




MUC- College of Pharmacy- Industrial Pharmacy II - 5<sup>th</sup> stage. - Fall 2023

### **Emulsifying Agents**

- Surface Active Agents or Surfactants
- Surfactants are classified into four types based on the charge carried by the **hydrophilic** part of the surfactant
- **1. Anionic Surfactants**: bear a negative charge. Example: potassium laurate, sodium stearate.
  - Good emulsifiers **but** cause gastrointestinal irritation (**limits** oral use).
- 2. Cationic Surfactant: bears a positive charge (eg. Cetrimide, benzalkonium chloride).
  - **These are Weak** emulsifiers. Very hydrophilic and highly soluble in water. Formulated with auxiliary emulsifiers.







Cetrimide

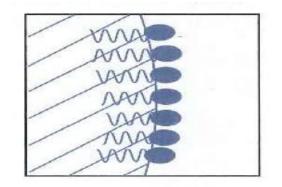
### **Emulsifying Agents**

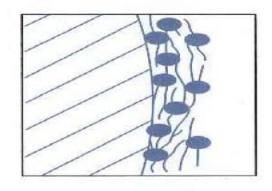


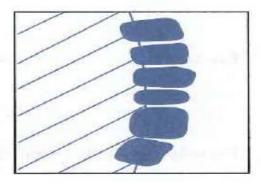
- **3.** Amphoteric surfactants: this type possesses both positively and negatively charged groups, depending on the pH of the system. An example is lecithin.
- **4. Non-ionic surfactants:** No charge, Not susceptible to pH changes and presence of electrolytes Examples:
  - Span<sup>®</sup> -Sorbitan esters of fatty acids
  - Tween  $\ensuremath{\mathbb{R}}$  -Polysorbates, Polyoxyethylene derivatives of Span  $\ensuremath{\mathbb{R}}$ 
    - Forms **interfacial films** decrease **interfacial tension** and stabilize the interface
    - Provide steric stabilization against coalescence (additional advantage).

### **HLB** Value

- HLB value defines relative affinity for the water and oil phases. This value is **only** for **nonionic surfactants**.
- Lipophilic: HLB values < 10 (more soluble in oil →used for w/o emulsions)
- **Hydrophilic**: HLB values > 10 (more soluble in water → used for o/w emulsions)
- Note: HLB does not provide information on the amount of surfactant required.
- Surfactant levels required need to be **experimentally** determined.
- Mixtures of emulsifying agents can also be used to obtain the desired 'effective HLB' values required for the oil phase in question.


| Use of Surfactant   |
|---------------------|
|                     |
| Water in oil        |
| emulsifying agents  |
| Wetting agents      |
| Oil in water        |
| emulsifying agents  |
| Detergents          |
| Solubilizing agents |
|                     |


Not for save

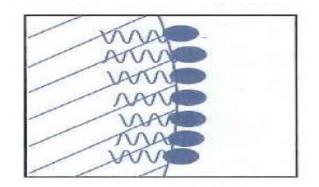


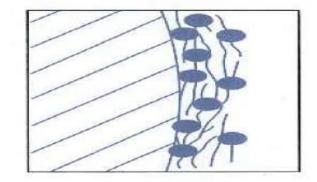

### **Auxiliary Emulsifiers**

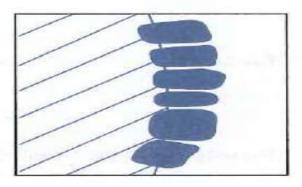
- Normally these agents are **incapable** of forming emulsions by themselves at low concentrations
- Function by:
  - 1. increasing viscosity (thickening agents) or
  - 2. by forming a gel-like structure that provides a barrier to the coalescence of droplets.
- 1. Hydrophilic colloids: polymers that are water sensitive which are **swellable** or soluble and form multi-molecular films around the droplets. It also increases the viscosity of the medium.
  - It can be from natural sources for example bentonite clay. Or completely Synthetic agents such as Carbopol<sup>®</sup>.









#### **Emulsion Dosage** Form

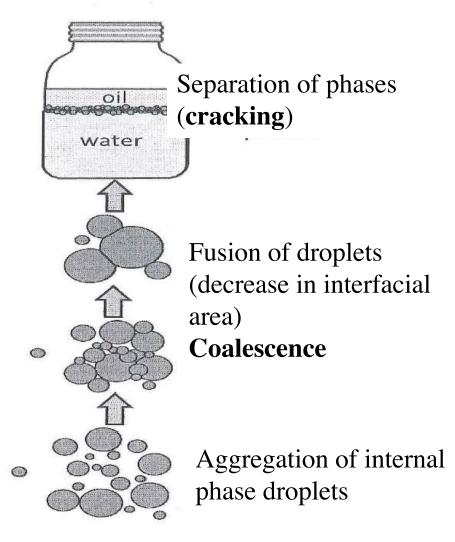

#### **Auxiliary Emulsifiers**

#### 2. Finely divided solids:

- Adsorbed on the interface. Wetted to some degree by **both** the liquid phases (a requirement for localization at the interface).
- Their particle size is much smaller than the droplet
  - Examples are polar inorganic heavy metal oxide, barium sulfate










### **Emulsion Stability**



- An emulsion is defined as a thermodynamically unstable system.
  - However, pharmaceutically stable emulsion does not require thermodynamic stability
- Droplets of the dispersed phase will settle or rise, and form aggregates (flocculation) and concentrate (creaming) (still stable as long as it can be reconstituted by shaking).
- Droplets of the internal phase, when they come in contact with each other, will coalesce spontaneously (decrease in the free energy)



### **Symptom of Instability**

- An emulsion is stabilized by the effectiveness of the electrical or the mechanical barrier at the interface (surface charge, adsorbed surfactant /polymer, adsorbed fine particles)
- Any change that affects these interfacial properties will potentially destabilize the emulsion
- Coalescence can occur because of **temperature** either an increase in temperature or freezing which will affect surfactant activity or solubility in the external phase.
- Emulsion instability is evident by **creaming**, reversible aggregation (**flocculation**), and or irreversible aggregation (**coalescence**).

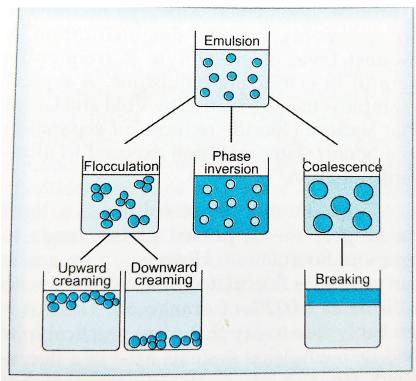



Fig. 18.22: Symptoms of instability problems of emulsions

# Symptom of Instability

#### • Creaming:

- Under the effect of gravity, the suspended particle tends to rise or sediment depending on the differences in specific gravity between the phases.
- A simple example is the creaming of milk when fat globules slowly rise to the top of the product.
- If creaming takes place **without aggregation**, the emulsion can be reconstituted by shaking or mixing, and creaming is just a simple problem
  - Otherwise, it is a serious stability problem. In this case, droplets will coalesce with each other and may lead to emulsion cracking (separation).





### **Symptom of Instability**

#### • Coalescence

- It is a growth process during which the emulsified particles join to form larger particles.
- The major factor that **prevents** coalescence in flocculated and un-flocculated emulsion is the mechanical strength of the interfacial barrier
- Coalescence results in the separation of the two phases and emulsion failure (**irreversible case**).
- Coalescence is usually attributed to the **failure of the emulsifying agent** to do its job.

