ALMUSTAQBAL UNIVERSITY COLLEGE

College of Engineering and Engineering Techniques

Biomedical Engineering Department

Stage : Second year students

Subject : Chemistry 1 - Lecture 9

Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Buffer solutions

The buffer is a mixture of a weak acid and its conjugate base (Salt) or a weak base and its conjugate acid (Salt), that resists change in pH of a solution due to dilution or addition of a small amounts of strong acid or base . Buffers are used to Maintain the pH of solutions at relatively constant and predetermined level.

Usually, buffers have a useful pH range = $pK \pm 1$,

Calculation of the pH of different types of Buffer solutions

1. Acidic buffers

Consists of weak acid (HA) and its salt (A^-). Typical example is (acetic acid – acetate salt ($CH_3COOH - CH_3COO^-$)

 $HA + H_2O \rightleftharpoons H_3O^+ + A^- - 1$

Ka =
$$\frac{[H_3 O^+][A^-]}{[HA]}$$

 $A^- + H_2O \rightleftharpoons OH^- + HA - 2$

$$\mathbf{K}_{\mathrm{b}} = \frac{[OH][HA]}{[A-]} = \frac{Kw}{Ka}$$

equilibrium (1) will decrease C_{HA} by amount $[H_3O^+]$ and equilibrium (2) will increase it by amount $[OH^-]$.

 $[HA]_{equil.} = C_{HA} - [H_3O^+] + [OH^-]$

Similarly equilibrium (1) will increase $[A^-]$ by amount $[H_3O^+]$

while equilibrium O will decrease $[A^-]$ by amount $[OH^-]$ then

$$[A^{-}]_{equil.} = C_{A} + [H_3O^{+}] - [OH^{-}]$$

As we have acid then

 $[HA] = C_{HA} - [H_3O^+]$

 $[A^{-}] = C_{A^{-}} + [H_{3}O^{+}]$

And because we have weak acid then

 $[HA] \cong C_{HA}$ $[A^{-}] \cong C_{A}$ $Ka = \frac{[H_3O^+][A^{-}]}{[HA]}$ $[H_3O^+] = K_a \frac{[HA]}{[A^{-}]}$ $[H_3O^+] = K_a \frac{C_{HA}}{C_{A^{-}}}$

- log [H₃O] = -log K_a - log
$$\frac{C_{HA}}{C_{A-}}$$

pH = pKa + log $\frac{C_A}{C_{HA}}$
** pH = pKa + log $\frac{C_{salt}}{C_{acid}}$ (Henderson equation)

Example: what is the pH of a solution that is (0.40 M) in formic acid (Ka= 1.77×10^{-4}) and (1.0 M) in sodium formate ?

Solution :

The pH of the solution will be effected by Ka of formic acid (HCOOH) and K_b of formate ion (HCOO⁻)

HCOONa \rightarrow HCOO⁻ + Na⁺

 $HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$ Ka = 1.77 x10⁻⁴

HCOO⁻ + H₂O \rightleftharpoons HCOOH + OH⁻ $K_b = \frac{Kw}{Ka} = 5.65 \times 10^{-11}$

Since Ka of formic acid >> K_b for formate the solution will be acidic and Ka will determine the H_3O^+ concentration.

$$pH = pKa + \log \frac{C_{salt}}{C_{acid}}$$

$$pKa = -\log Ka = -\log (1.77 \times 10^{-4}) = 3.75$$

$$pH = 3.75 + \log \frac{1.0}{0.4} = 4.14$$

$$[H_3O^+] = 10^{-pH} = 10^{-4.14} = 7.2 \times 10^{-5}$$

Check if
$$\frac{[H30^+]}{[HCO0H]} \times 100 < 10\%$$
 Then approximation is valid
 $\frac{7.2 \times 10^{-5}}{0.4} \times 100 = 0.018\%$

The approximation is valid:

B) Basic Buffers

It is composed of a solution of a weak base (B) and it`s conjugate acid (Salt) BH^+ e.g : NH_3 - NH_4Cl .

1)
$$B + H_2O \rightleftharpoons BH^+ + OH^ K_b = \frac{[OH^-][BH^+]}{[B]}$$

 $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$
2) $BH^+ + H_2O \rightleftharpoons H_3O^+ + B$ $K_a = \frac{Kw}{Kb} = \frac{[H_3O^+][B]}{[BH^+]}$
 $NH_4^+ + H_2O \rightleftharpoons H_3O^+ + NH_3$
B) will decrease in equilibrium (1) by amount [OH⁻]

[B] will decrease in equilibrium 1 by amount [OH⁻] & increase in equilibrium 2 by [H₃O⁺]

Then $[B] = C_B - [OH^-] + [H_3O^+]$

Similarly [BH⁺] will increase in equilibrium (1) By [OH⁻] and decrease in equilibrium (2) by $[H_3O^+]$.

Then $[BH^+] = C_{BH+} + [OH^-] - [H_3O^+]$ $[B] \equiv C_B$ and $[BH^+] \equiv C_{BH+}$ (by approximation) $K_b = \frac{[OH^-][BH^+]}{[B]}$

$$[OH^{-}] = K_{b} \frac{C_{B}}{C_{BH^{+}}}$$

$$pOH = pK_{b} + \log \frac{[BH^{+}]}{[B]}$$

$$pOH = pK_{b} + \log \frac{C_{salt}}{C_{base}}$$
 (Henderson equation)

In General:

$$pH = pK_a + log \frac{C_{salt}}{C_{acid}}$$
 (for acidic buffer)
$$pOH = pK_b + log \frac{C_{salt}}{C_{base}}$$
 (for basic buffer)

pH = 14 - pOH

Example:

Calculate the pH of a solution that is 0.1 M in NH_3 (K_b =1.75 $x10^{\text{-5}})$ and 0.15 M in $\,NH_4Cl\,$.

Solution:

 $NH_4Cl \rightarrow NH_4^+ + Cl^{\text{-}}$

 $\mathbf{NH}_{4^{+}} + \mathbf{H}_{2}\mathbf{O} \rightleftharpoons \mathbf{NH}_{3} + \mathbf{H}_{3}\mathbf{O}^{+}$ $\mathbf{Ka} = \frac{\mathbf{K}_{w}}{\mathbf{K}_{b}} = \frac{10^{-14}}{1.75 \times 10^{-5}} = 5.7 \times 10^{-10}$

 $\mathbf{NH}_3 + \mathbf{H}_2\mathbf{O} \rightleftharpoons \mathbf{NH}_4^+ + \mathbf{OH}^ \mathbf{K}_b = 1.75 \times 10^{-5}$

because $K_b >> K_a$ the solution is assumed to be basic

 $pOH = pK_b + log \frac{C_{salt}}{C_{base}} \text{ (for basic buffer)}$ $pK_b = - \log K_b = - \log (1.75 \times 10^{-5}) = 4.75$

$$\mathbf{pOH} = \mathbf{4.75} + \log \frac{0.15}{0.1} = 4.93$$

To check the validity of approximation we calculate [OH⁻]

 $[OH^{-}] = 10^{-pOH} = 10^{-4.93} = 1.17 \times 10^{-5}$ then Check if $\frac{[OH^{-}]}{[Base]} \times 100 < 10 \%$ Then approximation is valid Then $\frac{1.17 \times 10^{-5}}{0.2} \times 100 = 5.85 \times 10^{-3}$ (approximation is valid) pH= 14 - 4.93 = 9.07

Properties of buffer solution:

1 Effect of dilution:

The pH of the buffer solution remains independent of dilution until the concentration of species it's contain are decreased to the point where the approximation mentioned above become invalid .

Example: calculate the change in pH of a buffer containing (0.4M) formic acid C_6H_5COOH (Ka =6.3 x10⁻⁵) and (1M) sodium benzoate C_6H_5COONa after dilution by a factor of 50 times .

Solution:

 $C_6H_5COONa \rightarrow C_6H_5COO^- + Na^+$

 $C_6H_5COOH + H_2O \rightleftharpoons C_6H_5COO^- + H_3O^+$ Ka = 6.3 x10⁻³

 $C_6H_5COO^- + H_2O \rightleftharpoons C_6H_5COOH + OH^ K_b = \frac{Kw}{Ka} = 1.58 \times 10^{-4}$

Since Ka of formic acid >> K_b for formate the solution will be acidic.

 $pH = pKa + log \frac{[C6H5COONa]}{[C6H5COOH]}$

pKa =
$$-\log(3.6 \times 10^{-3}) = 2.2$$

a. Before Dilution
pH = $2.2 + \log \frac{1}{0.4} = 2.59$
[H₃O⁺]= $10^{-pH} = 10^{-2.59} = 2.57 \times 10^{-3}$
Check if $\frac{[H3O^+]}{2.59} \approx 100 \times 10^{-9}$ The

Check if $\frac{[H30^+]}{[C6H5COOH]} \times 100 < 10\%$ Then approximation is valid $\frac{2.57 \times 10^{-3}}{0.4} \times 100 = 0.64\%$

The approximation is valid.

b. After dilution with 10 times .

$$M_1V_1 = M_2V_2$$

for [C₆H₅COOH] 0.4 x1 = M₂ x 10 [C₆H₅COOH] = $\frac{0.4}{10}$ = 0.04M

For
$$[C_6H_5COO^-]$$

 $1 \ge 1 = M_2 \ge 50$
 $[C_6H_5COO^-] = \frac{1}{10} = 0.1M$
 $pH = 2.2 + \log \frac{1}{0.04} = 3.59$
 $[H_3O^+] = 10^{-pH} = 10^{-3.59} = 2.57 \ge 10^{-4}$
Check if $\frac{[H3O^+]}{[C6H5COOH]} \ge 100 \le 10\%$ Then approximation is valid
 $\frac{2.57 \ge 10^{-4}}{0.04} \ge 100 = 0.64\%$

The approximation is valid.

 \therefore NO change in pH occur after 50 times dilution($\Delta PH = 0$)

(2) Effect of adding strong acid or base:

Buffer solution resist the pH change after addition of small amount of strong acid or base.

Example: Calculate the pH change that take place when 100 mL portion of: **a**) 0.05 M NaOH **b**) 0.05 M HCl

is added seperately to 400 mL of buffer solution of (0.3M) $NH_4Cl\,$ and (0.2M) $NH_3\,(K_b=1.75x10^{-5})$.

Solution:

a. The original buffer before addition

$$NH_4Cl \rightarrow NH_4^+ + Cl^-$$

 $\mathbf{NH_{4^{+}} + H_2O} \rightleftharpoons \mathbf{NH_3} + \mathbf{H_3O^{+}} \qquad \mathbf{Ka} = \frac{\mathbf{K_w}}{\mathbf{K_b}} = \frac{\mathbf{10^{-14}}}{\mathbf{1.75 \times 10^{-5}}} = 5.7 \times 10^{-10}$ $\mathbf{NH_3} + \mathbf{H_2O} \rightleftharpoons \mathbf{NH_{4^{+}} + OH^{-}} \qquad \mathbf{K_b} = \mathbf{1.75 \times 10^{-5}}$

because $K_b >> K_a$ the solution is assumed to be basic

$$pOH = pK_b + \log \frac{C_{salt}}{C_{base}} \text{ (for basic buffer)}$$

$$pK_b = -\log K_b = -\log (1.75 \text{ x } 10^{-5}) = 4.75$$

$$pOH = pK_b + \log \frac{C_{NH_4Cl}}{C_{NH_3}} = 4.76 + \log \frac{0.3}{0.2} = 4.93$$

$$[OH^-] = 10^{-pOH} = 10^{-4.93} = 1.17 \text{ x } 10^{-5}$$

To check the validity of approximation we calculate [OH⁻] then Check if $\frac{[OH-]}{[Base]} \times 100 < 10$ % Then approximation is valid Then $\frac{1.17 \times 10^{-5}}{0.2} \times 100 = 5.85 \times 10^{-3}$ % (approximation is valid) pH = 14 - 4.93 = 9.07

b. after addition of strong base or acid

1) addition of NaOH converts part of NH_4^+ in the buffer to NH_3

$NH_4^+ + OH^- \rightleftharpoons NH_3 + H_2O$ (OH⁻ from NaOH)

The analytical concentration of NH₃ and NH₄Cl become :

$$C_{NH_3} = \frac{\text{original No.of moles of NH}_3 + \text{moles of produced NH}_3}{\text{Total New volume (L)}}$$

Or $C_{NH_3} = \frac{\text{original No.of mmoles of NH}_3 + \text{ mmoles of produced NH}_3}{\text{Total New volume (mL)}}$

No. of moles of produced $NH_3 = No.$ of moles of reacted NaOH

$$C_{NH_{3}} = \frac{M_{NH_{3}}V_{NH_{3}} + M_{NaOH}V_{NaOH}}{V_{NH_{3}} + V_{NaOH}}$$

$$C_{NH_{3}} = \frac{400 \times 0.2 + 100 \times 0.05}{[400 + 100]} = \frac{85}{500} = 0.17M$$

$$C_{NH_{4+}} = \frac{\text{original No. of moles of NH_{4}}^{+} - \text{moles of reacted NH_{4}}^{+}}{\text{Total New volume(L)}}$$

$$Or C_{NH_{4+}} = \frac{\text{original No. of mmoles of NH_{4}}^{+} - \text{mmoles of reacted NH_{4}}^{+}}{\text{Total New volume(L)}}$$

No. of moles of consumed $NH_4^+ = No.$ of moles of reacted NaOH

$$C_{NH_4Cl} = \frac{M_{NH_4Cl}V_{NH_4Cl} - M_{NaOH}V_{NaOH}}{VNH_4Cl + V_{NaOH}}$$

$$C_{NH_4Cl} = \frac{400 \times 0.3 - 100 \times 0.05}{[400 + 100]} = \frac{115}{500} = 0.23M$$

pOH = 4.76+ log $\frac{0.23}{0.17} = 4.89$ (Henderson equation)
[OH⁻]= 10^{-pOH} = 10^{-4.93} = 1.17 x 10⁻⁵

To check the validity of approximation we calculate

if
$$\frac{[OH^-]}{[Base]} \times 100 < 10$$
 % Then approximation is valid
Then $\frac{1.17 \times 10^{-5}}{0.2} \times 100 = 5.85 \times 10^{-3}$ (approximation is valid)
pH = 14 - 4.89 = 9.11
 Δ pH = 9.11 - 9.07 = 0.04

2) addition of HCl converts part of NH₃ to NH₄Cl

$NH_3 + H_3O^+ \rightleftharpoons NH_4^+ + H_2O$ (H_3O^+ from HCl)

$$C_{\rm NH3} = \frac{\text{original No.of moles of NH}_3 - \text{moles of reacted NH}_3}{\text{Total New volume (L)}}$$

 $Or \ C_{NH3} \ = \ \frac{original \ No.of \ mmoles \ of \ NH_3 - \ mmoles \ of \ reacted \ NH_3}{Total \ New \ volume \ (mL)}$

No.of moles of consumed $NH_3 = No.$ of moles of reacted HCl

$$C_{NH_{3}} = \frac{M_{NH_{3}}V_{NH_{3}} - M_{HCl}V_{HCl}}{V_{NH_{3}} + V_{HCl}}$$

$$C_{NH_{3}} = \frac{400 \times 0.2 - 100 \times 0.05}{[400 + 100]} = 0.150M$$

$$C_{NH_{4}} + = \frac{\text{original No of moles of } NH_{4}^{+} + \text{moles of produced } NH_{4}^{+}}{\text{Total New volume (L)}}$$

Or $C_{\rm NH_4}^{+}$ = $\frac{\text{original No of mmoles of NH_4}^+ + \text{mmoles of produced NH_4}^+}{\text{Total New volume (mL)}}$

No. of moles of produced $NH_4 = No.$ of moles of reacted HCl

$$C_{NH_4Cl} = \frac{M_{NH_4Cl}V_{NH_4Cl} + M_{HCl}V_{HCl}}{V_{NH_4Cl} + V_{HCl}}$$

$$C_{NH_4Cl} = \frac{400 \times 0.3 + 100 \times 0.05}{[400 + 100]} = 0.25M$$

$$pOH = pK_b + \log \frac{NH_4Cl}{C_{NH_3}} \quad (\text{Henderson equation})$$

$$pOH = 4.76 + \log \frac{0.25}{0.15} = 4.98$$

$$[OH^-] = 10^{-pOH} = 10^{-4.98} = 1.05 \times 10^{-5}$$

To check the validity of approximation we calculate [OH⁻] then

Check if $\frac{[OH^-]}{[Base]} \times 100 < 10$ % Then approximation is valid Then $\frac{1.05 \times 10^{-5}}{0.2} \times 100 = 5.51 \times 10^{-3}$ (approximation is valid) pH = 14 - 4.98 = 9.02 $\Delta pH = 9.02 - 9.07 = -0.05$

Addition	∆pH
100 mL 0.05 M NaOH	0.04
100 mL 0.05 M HCl	- 0.05

Exercise:

Calculate the pH change that take place when 100 mL portion of:

a) 0.05 M NaOH **b)** 0.05 M HCl is added seperately to 400 mL of buffer solution of (0.1M) CH₃COOH and (0.2M) CH₃COONa ($K_a = 1.74x10^{-5}$).

Hint:

CH ₃ COOH + NaOH	⇒	CH ₃ COONa + H ₂ O
CH ₃ COO ⁻ + HCl	≠	CH ₃ COOH

Preparation of buffer:

To prepare a buffer, it is to choose the acid with the pK_a close to the desired <u>pH</u>. Usually, buffers have a useful <u>pH</u> range = $pK_a \pm 1$, but the closer it is to the weak acid's pKa, is the better.

Example:

Describe how you might prepare approximately (500 mL) of pH 4.5 buffer solution from 1 M acetic acid CH₃COOH (Ka= 1.74×10^{-5}) and sodium acetate CH₃COONa (82.03 g/mole).

Solution:

For acidic buffer(pH= 4.5)

$$pKa = -\log(1.74 \times 10^{-5}) = 4.76$$

$$4.5 = 4.76 + \log \frac{[CH_3C00^-]}{[CH_3C00H]}$$

$$4.5 = 4.76 + \log \frac{[CH_3C00^-]}{[1]}$$

$$4.5 - 4.76 = \log [CH_3COO^-] - \log 1$$

log [CH₃COO⁻]= - 0.26

 $[CH_3COO^-] = 10^{-0.26} = 0.549 M$

Mass of CH₃COONa needed = Molarity(M) x V(liter) x Mwt

Mass of CH₃COONa = 0.549(mol/L) x $\frac{500}{1000}$ L x 82.03(g/mol) = 22.52 g

The required buffer is to be made by dissolution of 22.52 g of CH₃COONa and completing the volume to 500 mL with 1M CH₃COOH

Buffer capacity

It is defined as the number of moles of an acid or base added to 1 liter of a buffer solution to cause its pH to change by 1 unit.

Buffer capacity depends on the amount of acid and base used to prepare the buffer. For example, if you have a 1-L buffer solution made of (1 M CH₃COOH and 1 M CH₃COONa) and a 1-L buffer solution that is ($0.1 \text{ M CH}_3\text{COOH}$ and $0.1 \text{ M CH}_3\text{COONa}$), although they will both have the same pH, the first buffer solution will have a greater buffer capacity because it has a higher amount of CH₃COOH and CH₃COO⁻.

To calculate buffer capacity, we use the following formula:

$\beta = n / \Delta p H$

 β is buffer capacity (it is unitless)

 \mathbf{n} is the number of moles of an acid or base (that were added to the buffer) per liter of the buffer

 $\mathbf{n} = \frac{No.of \text{ moles of acid or base added}}{vol of buffer(L)}$

 ΔpH is the difference between the initial pH of the buffer and the pH of the buffer after the acid or base is added

The higher the capacity (β) , the more acid and base can be added to the buffer before its pH changes significantly.

Example:

A volume of 150 mL of 0.2 M HCl was added to 600 mL of buffer with a pH of 7.39. which gives the buffer solution a new pH of 7.03. What is the capacity of this buffer solution?

Solution:

No. of moles = Molarity (M) \times V(L)

Number of moles of HCl = $0.2 \text{ M} \times 0.150 \text{ L} = 0.03 \text{ mol}$

 $n = \frac{No.of \text{ moles of acid or base added}}{vol of buffer(L)} = \frac{0.03 \text{ mole}}{0.6 \text{ L}} = 0.05 \text{ mol/L}$

n = 0.05 mol/L

 $\Delta pH = |7.03 - 7.39| = 0.36$

 $\beta = \frac{n}{\Delta pH} = \frac{0.05}{0.36} = 0.14$ Thus, the buffer capacity of our buffer solution is 0.14.