ALMUSTAQBAL UNIVERSITY COLLEGE

College of Engineering and Engineering Techniques
Biomedical Engineering Department
Stage : Second year students
Subject : Chemistry 1 - Lecture 9
Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Buffer solutions

The buffer is a mixture of a weak acid and its conjugate base (Salt) or a weak base and its conjugate acid (Salt), that resists change in pH of a solution due to dilution or addition of a small amounts of strong acid or base. Buffers are used to Maintain the pH of solutions at relatively constant and predetermined level.
Usually, buffers have a useful pH range $=\mathrm{pK} \pm 1$,

Calculation of the $\mathbf{p H}$ of different types of Buffer solutions

1. Acidic buffers

Consists of weak acid (HA) and its salt (A^{-}) .Typical example is (acetic acid - acetate salt $\left(\mathrm{CH}_{3} \mathrm{COOH}-\mathrm{CH}_{3} \mathrm{COO}^{-}\right)$

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \rightleftharpoons 1
$$

$$
\mathrm{Ka}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[A^{-}\right]}{[H A]}
$$

$\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OH}^{-}+\mathrm{HA}$2
$\mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{OH}][\mathrm{HA}]}{[A-]}=\frac{K w}{K a}$
equilibrium(1) will decrease C_{HA} by amount $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and equilibrium (2) will increase it by amount $\left[\mathrm{OH}^{-}\right]$.
$[\mathrm{HA}]_{\text {equil. }}=\mathrm{C}_{\mathrm{HA}}-\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{OH}^{-}\right]$
Similarly equilibrium (1) will increase $\left[\mathrm{A}^{-}\right]$by amount $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ while equilibrium (2) will decrease $\left[\mathrm{A}^{-}\right]$by amount $\left[\mathrm{OH}^{-}\right]$then
$\left[\mathrm{A}^{-}\right]_{\text {equil. }}=\mathrm{C}_{\mathrm{A}-}+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-\left[\mathrm{OH}^{-}\right]$
As we have acid then
$[\mathrm{HA}]=\mathrm{C}_{\mathrm{HA}}-\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\left[\mathrm{A}^{-}\right]=\mathrm{C}_{\mathrm{A}^{-}}+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
And because we have weak acid then
$[\mathrm{HA}] \cong \mathrm{C}_{\mathrm{HA}}$
$\left[\mathrm{A}^{-}\right] \cong \mathrm{C}_{\mathrm{A}-}$
$K a=\frac{\left[H_{3} O^{+}\right]\left[A^{-}\right]}{[H A]}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K}_{\mathrm{a}} \frac{[H A]}{\left[A^{-}\right]}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K}_{\mathrm{a}} \frac{C_{H A}}{C_{A^{-}}}$
$-\log \left[\mathrm{H}_{3} \mathrm{O}\right]=-\log \mathrm{K}_{\mathrm{a}}-\log \frac{C_{H A}}{C_{A-}}$

$$
\begin{gathered}
\mathrm{pH}=\mathrm{pKa}+\log \frac{\mathrm{c}_{\mathrm{A}}}{\mathrm{C}_{\mathrm{HA}}} \\
\text { ** } \mathrm{pH}=\mathrm{pKa}+\log \frac{\mathrm{c}_{\text {salt }}}{\mathrm{C}_{\text {acid }}} \quad \text { (Henderson equation) }
\end{gathered}
$$

Example: what is the pH of a solution that is $(0.40 \mathrm{M})$ in formic acid $\left(\mathrm{Ka}=1.77 \times 10^{-4}\right)$ and $(1.0 \mathrm{M})$ in sodium formate ?

Solution :

The pH of the solution will be effected by Ka of formic acid (HCOOH) and K_{b} of formate ion $\left(\mathrm{HCOO}^{-}\right)$
$\mathrm{HCOONa} \quad \rightarrow \quad \mathrm{HCOO}^{-}+\mathrm{Na}^{+}$

$$
\begin{gathered}
\mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCOO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{Ka}=1.77 \times 10^{-4} \\
\mathrm{HCOO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCOOH}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=\frac{K w}{K a}=5.65 \times 10^{-11}
\end{gathered}
$$

Since $K a$ of formic acid $\gg \mathrm{K}_{\mathrm{b}}$ for formate the solution will be acidic and Ka will determine the $\mathrm{H}_{3} \mathrm{O}^{+}$concentration.

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pKa}+\log \frac{\mathrm{c}_{\text {salt }}}{\mathrm{C}_{\text {acid }}} \\
& \mathrm{pKa}=-\log \mathrm{Ka}=-\log \left(1.77 \times 10^{-4}\right)=3.75 \\
& \mathrm{pH}=3.75+\log \frac{\mathbf{1 . 0}}{\mathbf{0 . 4}}=4.14 \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-4.14}=7.2 \times 10^{-5}}
\end{aligned}
$$

Check if $\frac{\left[\mathrm{H3O}^{+}\right]}{[\mathrm{HCOOH}]} \times 100<10 \%$ Then approximation is valid
$\frac{7.2 \times 10^{-5}}{0.4} \times 100=0.018 \%$
The approximation is valid:
B) Basic Buffers

It is composed of a solution of a weak base (B) and it`s conjugate acid (Salt) BH^{+}e.g : $\mathrm{NH}_{3}-\mathrm{NH}_{4} \mathrm{Cl}$.

1) $\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BH}^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{BH}^{+}\right]}{[\mathrm{B}]}$

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

2) $\mathrm{BH}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{B} \quad \mathrm{K}_{\mathrm{a}}=\frac{\mathrm{Kw}}{\mathrm{Kb}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{B}]}{\left[\mathrm{BH}^{+}\right]}$

$$
\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NH}_{3}
$$

[B] will decrease in equilibrium (1)by amount $\left[\mathrm{OH}^{-}\right] \&$ increase in equilibrium (2)by $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

Then $[\mathrm{B}]=\mathrm{C}_{\mathrm{B}}-\left[\mathrm{OH}^{-}\right]+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
Similarly $\left[\mathrm{BH}^{+}\right]$will increase in equilibrium(1) $\mathrm{By}\left[\mathrm{OH}^{-}\right]$and decrease in equilibrium (2) by $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.

Then $\left[\mathrm{BH}^{+}\right]=\mathrm{C}_{\mathrm{BH}+}+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$[\mathrm{B}] \equiv \mathrm{C}_{\mathrm{B}} \quad$ and $\quad\left[\mathrm{BH}^{+}\right] \equiv \mathrm{C}_{\mathrm{BH}+}$ (by approximation)
$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{BH}^{+}\right]}{[\mathrm{B}]}$
$\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{b}} \frac{\mathrm{C}_{\mathrm{B}}}{\mathrm{CBH}^{+}}$
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{\left[\mathrm{BH}^{+}\right]}{[\mathrm{B}]}$
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{\mathrm{C}_{\text {salt }}}{\mathrm{C}_{\text {base }}}$ (Henderson equation)

In General:

$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\mathrm{c}_{\text {salt }}}{\mathrm{C}_{\text {acid }}} \quad$ (for acidic buffer)
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{\mathrm{C}_{\text {salt }}}{\mathrm{C}_{\text {base }}}$ (for basic buffer)
$\mathrm{pH}=14-\mathrm{pOH}$

Example:

Calculate the pH of a solution that is 0.1 M in $\mathrm{NH}_{3}\left(\mathrm{~K}_{\mathrm{b}}=1.75 \times 10^{-5}\right)$ and 0.15 M in $\mathrm{NH}_{4} \mathrm{Cl}$.

Solution:

$\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{Cl}^{-}$
$\mathbf{N H}_{4}{ }^{+}+\mathbf{H}_{\mathbf{2}} \mathbf{O} \rightleftharpoons \mathbf{N H}_{3}+\mathbf{H}_{\mathbf{3}} \mathbf{O}^{+} \quad \mathrm{Ka}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{b}}}=\frac{10^{-14}}{1.75 \times 10^{-5}}=5.7 \times 10^{-10}$
$\mathbf{N H}_{3}+\mathbf{H}_{2} \mathbf{O} \rightleftharpoons \mathbf{N H}_{4}{ }^{+}+\mathbf{O H}^{-} \quad \mathrm{K}_{\mathrm{b}}=1.75 \times 10^{-5}$
because $K_{b} \gg K_{a}$ the solution is assumed to be basic

$$
\mathrm{pOH}=\mathrm{pK} \mathrm{~K}_{\mathrm{b}}+\log \frac{\mathrm{C}_{\text {salt }}}{\mathrm{C}_{\text {base }}}(\text { for basic buffer })
$$

$\mathrm{pK}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}=-\log \left(1.75 \times 10^{-5}\right)=4.75$
$\mathrm{pOH}=4.75+\log \frac{0.15}{0.1}=4.93$

To check the validity of approximation we calculate $\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}=10^{-4.93}=1.17 \times 10^{-5}$
then Check if $\frac{\left[\mathrm{OH}^{-}\right]}{[\text {Base }]} \times 100<10 \%$ Then approximation is valid
Then $\frac{1.17 \times 10^{-5}}{0.2} \times 100=5.85 \times 10^{-3}$ (approximation is valid)
$\mathrm{pH}=14-4.93=9.07$

Properties of buffer solution:

(1) Effect of dilution:

The pH of the buffer solution remains independent of dilution until the concentration of species it's contain are decreased to the point where the approximation mentioned above become invalid .

Example: calculate the change in pH of a buffer containing (0.4 M) formic acid $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\left(\mathrm{Ka}=6.3 \times 10^{-5}\right)$ and $(1 \mathrm{M})$ sodium benzoate $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$ after dilution by a factor of 50 times .

Solution:

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa} \quad \rightarrow \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{Na}^{+}$

$$
\begin{array}{ll}
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} & \mathrm{Ka}=6.3 \times 10^{-3} \\
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{OH}^{-} & \mathrm{K}_{\mathrm{b}}=\frac{K w}{K a}=1.58 \times 10^{-4}
\end{array}
$$

Since Ka of formic acid $\gg \mathrm{K}_{\mathrm{b}}$ for formate the solution will be acidic.

$$
\mathrm{pH}=\mathrm{pKa}+\log \frac{[\mathrm{C} 6 \mathrm{H} 5 \mathrm{COONa}]}{[\mathrm{C} 6 \mathrm{H} 5 \mathrm{COOH}]}
$$

$\mathrm{pKa}=-\log \left(3.6 \times 10^{-3}\right)=2.2$
a. Before Dilution
$\mathrm{pH}=2.2+\log \frac{1}{0.4}=2.59$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-2.59}=2.57 \times 10^{-3}$
Check if $\frac{\left[{\left.\mathrm{H} 3 \mathrm{O}^{+}\right]}_{[\mathrm{C} 6 \mathrm{H} 5 \mathrm{COOH}]}\right.}{x 100<10 \% \text { Then approximation is valid }}$
$\frac{2.57 \times 10^{-3}}{0.4} \times 100=0.64 \%$
The approximation is valid.
b. After dilution with 10 times .

$$
\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}
$$

for $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]$
$0.4 \times 1=\mathrm{M}_{2} \times 10$
$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]=\frac{0.4}{10}=0.04 \mathrm{M}$

For $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]$
$1 \times 1=\mathrm{M}_{2} \times 50$
$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]=\frac{1}{10}=0.1 \mathrm{M}$
$\mathrm{pH}=2.2+\log \frac{1}{0.04}=3.59$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-3.59}=2.57 \times 10^{-4}$
Check if $\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{C} 6 \mathrm{H} 5 \mathrm{COOH}]} \times 100<10 \%$ Then approximation is valid $\frac{2.57 \times 10^{-4}}{0.04} \times 100=0.64 \%$

The approximation is valid.
\therefore NO change in pH occur after 50 times dilution $(\Delta \mathrm{PH}=0)$

(2) Effect of adding strong acid or base:

Buffer solution resist the pH change after addition of small amount of strong acid or base.

Example: Calculate the pH change that take place when 100 mL portion $\begin{array}{lll}\text { of: } & \text { a) } 0.05 \mathrm{M} \mathrm{NaOH} & \text { b) } 0.05 \mathrm{M} \mathrm{HCl}\end{array}$
is added seperately to 400 mL of buffer solution of $(0.3 \mathrm{M}) \mathrm{NH}_{4} \mathrm{Cl}$ and $(0.2 \mathrm{M}) \mathrm{NH}_{3}\left(\mathrm{~K}_{\mathrm{b}}=1.75 \times 10^{-5}\right)$.

Solution:

a. The original buffer before addition

$\mathbf{N H}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{Cl}^{-}$
$\mathbf{N H}_{4}{ }^{+}+\mathbf{H}_{2} \mathbf{O} \rightleftharpoons \mathbf{N H}_{3}+\mathbf{H}_{3} \mathbf{O}^{+} \quad \mathrm{Ka}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{b}}}=\frac{10^{-14}}{1.75 \times 10^{-5}}=5.7 \times 10^{-10}$
$\mathbf{N H}_{3}+\mathbf{H}_{2} \mathbf{O} \rightleftharpoons \mathbf{N H}_{4}{ }^{+}+\mathbf{O H}^{-} \quad \mathrm{K}_{\mathrm{b}}=1.75 \times 10^{-5}$
because $K_{b} \gg K_{a}$ the solution is assumed to be basic

$$
\mathrm{pOH}=\mathrm{pK} \mathrm{~K}_{\mathrm{b}}+\log \frac{\mathrm{C}_{\text {salt }}}{\mathrm{C}_{\text {base }}} \text { (for basic buffer) }
$$

$\mathrm{pK}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}=-\log \left(1.75 \times 10^{-5}\right)=4.75$
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{C_{\mathrm{NH}_{4} \mathrm{Cl}}}{C_{N H_{3}}}=4.76+\log \frac{0.3}{0.2}=4.93$
$\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}=10^{-4.93}=1.17 \times 10^{-5}$

To check the validity of approximation we calculate $\left[\mathrm{OH}^{-}\right]$then Check if $\frac{[\mathrm{OH}-]}{[\text { Base }]} \times 100<10 \%$ Then approximation is valid

Then $\frac{1.17 \times 10^{-5}}{0.2} \times 100=5.85 \times 10^{-3} \%$ (approximation is valid) $\mathrm{pH}=14-4.93=9.07$
b. after addition of strong base or acid

1) addition of NaOH converts part of $\mathrm{NH}_{4}{ }^{+}$in the buffer to NH_{3}
$\mathbf{N H}_{4}{ }^{+}+\mathbf{O H}^{-} \rightleftharpoons \mathbf{N H}_{3}+\mathbf{H}_{2} \mathrm{O}\left(\mathrm{OH}^{-}\right.$from NaOH$)$
The analytical concentration of NH_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$ become :
$C_{N H_{3}}=\frac{\text { original No.of moles of } \mathrm{NH}_{3}+\text { moles of produced } \mathrm{NH}_{3}}{\text { Total New volume (L) }}$
Or $C_{N H_{3}}=\frac{\text { original No.of mmoles of } \mathrm{NH}_{3}+\text { mmoles of produced } \mathrm{NH}_{3}}{\text { Total New volume }(\mathrm{mL})}$
No. of moles of produced $\mathrm{NH}_{3}=$ No. of moles of reacted NaOH
$C_{\mathrm{NH}_{3}}=\frac{\mathrm{M}_{\mathrm{NH}_{3}} \mathrm{~V}_{\mathrm{NH}_{3}}+\mathrm{M}_{\mathrm{NaOH}} \mathrm{V}_{\mathrm{NaOH}}}{\mathrm{V}_{\mathrm{NH}_{3}}+\mathrm{V}_{\mathrm{NaOH}}}$
$C_{N H_{3}}=\frac{400 \times 0.2+100 \times 0.05}{[400+100\}}=\frac{85}{500}=0.17 \mathrm{M}$
$\mathrm{C}_{\mathrm{NH} 4+}=\frac{\text { original No. of moles of } \mathrm{NH}_{4}{ }^{+}-\text {moles of reacted } \mathrm{NH}_{4}{ }^{+}}{\text {Total New volume(L) }}$
Or $\mathrm{C}_{\mathrm{NH} 4+}=\frac{\text { original No. of mmoles of } \mathrm{NH}_{4}{ }^{+}-\text {mmoles of reacted } \mathrm{NH}_{4}{ }^{+}}{\text {Total New volume }(\mathrm{mL})}$
No. of moles of consumed $\mathrm{NH}_{4}{ }^{+}=$No. of moles of reacted NaOH
$C_{\mathrm{NH}_{4} \mathrm{Cl}}=\frac{\mathrm{M}_{\mathrm{NH}_{4} \mathrm{Cl}} \mathrm{V}_{\mathrm{NH}_{4} \mathrm{Cl}}-\mathrm{M}_{\mathrm{NaOH}} \mathrm{V}_{\mathrm{NaOH}}}{V N H_{4} C l+\mathrm{V}_{\mathrm{NaOH}}}$
$C_{N H_{4} C l}=\frac{400 \times 0.3-100 \times 0.05}{[400+100]}=\frac{115}{500}=0.23 \mathrm{M}$
$\mathrm{pOH}=4.76+\log \frac{0.23}{0.17}=4.89 \quad$ (Henderson equation)
$\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}=10^{-4.93}=1.17 \times 10^{-5}$
To check the validity of approximation we calculate if $\frac{\left[\mathrm{OH}^{-}\right]}{[\text {Base }]} \times 100<10 \%$ Then approximation is valid

Then $\frac{1.17 \times 10^{-5}}{0.2} \times 100=5.85 \times 10^{-3}$ (approximation is valid)

$$
\mathrm{pH}=14-4.89=9.11
$$

$$
\Delta \mathrm{pH}=9.11-9.07=0.04
$$

2) addition of HCl converts part of NH_{3} to $\mathrm{NH}_{4} \mathrm{Cl}$
$\mathbf{N H}_{\mathbf{3}}+\mathbf{H}_{\mathbf{3}} \mathrm{O}^{+} \rightleftharpoons \mathbf{N H}_{4}{ }^{+}+\mathbf{H}_{\mathbf{2}} \mathrm{O}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right.$from HCl$)$
$\mathrm{C}_{\mathrm{NH} 3}=\frac{\text { original No.of moles of } \mathrm{NH}_{3}-\text { moles of reacted } \mathrm{NH}_{3}}{\text { Total New volume (L) }}$
Or $\mathrm{C}_{\mathrm{NH} 3}=\frac{\text { original No.of mmoles of } \mathrm{NH}_{3}-\text { mmoles of reacted } \mathrm{NH}_{3}}{\text { Total New volume }(\mathrm{mL})}$
No.of moles of consumed $\mathrm{NH}_{3}=\mathrm{No}$. of moles of reacted HCl
$C_{N H_{3}}=\frac{\mathrm{M}_{\mathrm{NH}_{3}} \mathrm{~V}_{\mathrm{NH}_{3}}-\mathrm{M}_{\mathrm{HCl}} \mathrm{V}_{\mathrm{HCl}}}{\mathrm{V}_{\mathrm{NH}_{3}}+\mathrm{V}_{\mathrm{HCl}}}$
$C_{N H_{3}}=\frac{400 \times 0.2-100 \times 0.05}{[400+100\}}=0.150 \mathrm{M}$
$C_{\mathrm{NH}_{4}}{ }^{+}=\frac{\text { original No of moles of } \mathrm{NH}_{4}{ }^{+}+\text {moles of produced } \mathrm{NH}_{4}{ }^{+}}{\text {Total New volume (L) }}$

Or $C_{\mathrm{NH}_{4}}{ }^{+}=\frac{\text { original No of mmoles of } \mathrm{NH}_{4}{ }^{+}+\text {mmoles of produced } \mathrm{NH}_{4}{ }^{+}}{\text {Total New volume }(\mathrm{mL})}$
No. of moles of produced $\mathrm{NH}_{4}=\mathrm{No}$. of moles of reacted HCl
$C_{\mathrm{NH}_{4} \mathrm{Cl}}=\frac{\mathrm{M}_{\mathrm{NH}_{4} \mathrm{Cl}} \mathrm{V}_{\mathrm{NH}_{4} \mathrm{Cl}}+\mathrm{M}_{\mathrm{HCl}} \mathrm{V}_{\mathrm{HCl}}}{\mathrm{V}_{\mathrm{NH}_{4} \mathrm{Cl}}+\mathrm{V}_{\mathrm{HCl}}}$
$C_{N H_{4} C l}=\frac{400 \times 0.3+100 \times 0.05}{[400+100]}=0.25 \mathrm{M}$
$\mathrm{pOH}=\mathrm{pK} \mathrm{b}_{\mathrm{b}}+\log \frac{\mathrm{NH}_{4} \mathrm{Cl}}{\mathrm{CNH}_{3}} \quad$ (Henderson equation)
$\mathrm{pOH}=4.76+\log \frac{0.25}{0.15}=4.98$
$\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}=10^{-4.98}=1.05 \times 10^{-5}$
To check the validity of approximation we calculate $\left[\mathrm{OH}^{-}\right]$then
Check if $\frac{\left[\mathrm{OH}^{-}\right]}{[\text {Base }]} \times 100<10 \%$ Then approximation is valid
Then $\frac{1.05 \times 10^{-5}}{0.2} \times 100=5.51 \times 10^{-3}$ (approximation is valid)
$\mathrm{pH}=14-4.98=9.02$
$\Delta \mathrm{pH}=9.02-9.07=-0.05$

Addition	$\Delta \mathbf{p H}$
100 mL 0.05 M NaOH	0.04
100 mL 0.05 M HCl	-0.05

Exercise:

Calculate the pH change that take place when 100 mL portion of:
a) 0.05 M NaOH
b) 0.05 M HCl is added seperately to 400 mL of buffer solution of $(0.1 \mathrm{M}) \mathrm{CH}_{3} \mathrm{COOH}$ and $(0.2 \mathrm{M}) \mathrm{CH}_{3} \mathrm{COONa}\left(\mathrm{K}_{\mathrm{a}}=\right.$ 1.74×10^{-5}).

Hint:

$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$ $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{HCl} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}$

Preparation of buffer:

To prepare a buffer, it is to choose the acid with the pK_{a} close to the desired pH . Usually, buffers have a useful pH range $=\mathrm{pK}_{\mathrm{a}} \pm 1$, but the closer it is to the weak acid's pKa , is the better .

Example:

Describe how you might prepare approximately (500 mL) of pH 4.5 buffer solution from 1 M acetic acid $\mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{Ka}=1.74 \times 10^{-5}\right)$ and sodium acetate $\mathrm{CH}_{3} \mathrm{COONa}$ ($82.03 \mathrm{~g} / \mathrm{mole}$).

Solution:

For acidic buffer($\mathbf{p H}=4.5$)
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{pH}=\mathrm{pKa}+\log \frac{\mathrm{c}_{\text {salt }}}{\mathrm{C}_{\text {acid }}}$ (Henderson equation for acidic buffers)
$\mathrm{pKa}=-\log \left(1.74 \times 10^{-5}\right)=\mathbf{4 . 7 6}$
$4.5=4.76+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[{ }^{-} \mathrm{CH}_{3} \mathrm{COOH}\right]}$
$4.5=4.76+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{[1]}$

$4.5-4.76=\log \left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]-\log 1$

$\log \left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=-0.26$
$\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=10^{-0.26}=\mathbf{0 . 5 4 9} \mathrm{M}$
Mass of $\mathrm{CH}_{3} \mathrm{COONa}$ needed $=\operatorname{Molarity}(\mathrm{M}) \times \mathrm{V}($ liter $) \times \mathrm{Mwt}$
Mass of $\mathrm{CH}_{3} \mathrm{COONa}=0.549(\mathrm{~mol} / \mathrm{L}) \times \frac{500}{1000} L \times 82.03(\mathrm{~g} / \mathrm{mol})=22.52 \mathrm{~g}$
The required buffer is to be made by dissolution of 22.52 g of
$\mathrm{CH}_{3} \mathrm{COONa}$ and completing the volume to 500 mL with $1 \mathrm{M} \mathrm{CH} 3 \mathrm{COOH}^{2}$

Buffer capacity

It is defined as the number of moles of an acid or base added to 1 liter of a buffer solution to cause its pH to change by 1 unit.

Buffer capacity depends on the amount of acid and base used to prepare the buffer. For example, if you have a 1-L buffer solution made of (1 $\mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and $1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$) and a 1-L buffer solution that is ($0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$), although they will both have the same pH , the first buffer solution will have a greater buffer capacity because it has a higher amount of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}$.

To calculate buffer capacity, we use the following formula:
$\boldsymbol{\beta}=\mathbf{n} / \Delta \mathrm{pH}$
$\boldsymbol{\beta}$ is buffer capacity (it is unitless)
n is the number of moles of an acid or base (that were added to the buffer) per liter of the buffer
$\mathbf{n}=\frac{\text { No.of moles of acid or base added }}{\text { vol of buffer }(L)}$
$\mathbf{\Delta} \mathbf{~ H}$ is the difference between the initial pH of the buffer and the pH of the buffer after the acid or base is added

The higher the capacity ($\boldsymbol{\beta}$), the more acid and base can be added to the buffer before its pH changes significantly.

Example:

A volume of 150 mL of 0.2 M HCl was added to 600 mL of buffer with a pH of 7.39. which gives the buffer solution a new pH of 7.03 . What is the capacity of this buffer solution?

Solution:

No. of moles $=$ Molarity $(\mathrm{M}) \times \mathrm{V}(\mathrm{L})$
Number of moles of $\mathrm{HCl}=0.2 \mathrm{M} \times 0.150 \mathrm{~L}=0.03 \mathrm{~mol}$
$\mathrm{n}=\frac{\text { No.of moles of acid or base added }}{\text { vol of buffer }(L)}=\frac{0.03 \mathrm{~mole}}{0.6 L}=0.05 \mathrm{~mol} / \mathrm{L}$
$\mathrm{n}=0.05 \mathrm{~mol} / \mathrm{L}$
$\Delta \mathrm{pH}=|7.03-7.39|=0.36$
$\beta=\frac{n}{\Delta \mathrm{pH}} \quad=\frac{\mathbf{0 . 0 5}}{\mathbf{0 . 3 6}}=0.14$
Thus, the buffer capacity of our buffer solution is 0.14 .

