Basic Operation on Signals

An issue of major importance is the use of systems to process or manipulate signals. This issue involves a combination of some basic operations.

However, two classes of these operations can be identified that are:

(1) Operation of dependent variables

A. Amplitude scaling (Amplitude shifting, Amplification): The scaled signal $\mathrm{ax}_{(\mathrm{t})}$ is $\mathrm{x}_{(\mathrm{t})}$ multiplied by the factor a where a is a constant real number, such as, the physical device that performs amplitude scaling is an electronic amplifier.

Figure 8: The amplitude scaling operation
In this case, only the values of y axis is changed since the amplitude is associated with this axis while, the values of x axis is constant.
B. Addition: If $x_{1}(t)$ and $x_{2}(t)$ denote a pair of CTSs. The signal $z(t)$ obtained by the addition of $x_{1}(t)$ and $x_{2}(t)$ is defined by:
$\mathrm{z}(\mathrm{t})=\mathrm{x}_{1}(\mathrm{t})+\mathrm{x}_{2}(\mathrm{t})$
In the case of DTS, it written as:
$\mathrm{z}[\mathrm{n}]=\mathrm{x}_{1}[\mathrm{n}]+\mathrm{x}_{2}[\mathrm{n}]$
It can be noted that the addition of two signals is nothing but addition of their corresponding amplitudes. This can be best explained by using the following example:

Figure 9: The addition operation
C. Subtraction: If $x_{1}(t)$ and $x_{2}(t)$ refer to a pair of CTSs. Then, the signal $z(t)$ obtained by the subtracting of $\mathrm{x}_{1}(\mathrm{t})$ from $\mathrm{x}_{2}(\mathrm{t})$ is defined by:
$\mathrm{z}(\mathrm{t})=\mathrm{x}_{1}(\mathrm{t})-\mathrm{x}_{2}(\mathrm{t})$
In the case of DTS, it written as:
$\mathrm{z}[\mathrm{n}]=\mathrm{x}_{1}[\mathrm{n}]-\mathrm{x}_{2}[\mathrm{n}]$

Figure 10: The subtraction operation
D. Multiplication: let $x_{1}(t)$ and $x_{2}(t)$ denote a pair of CTSs. The signal $z(t)$ resulting from the multiplication of $x_{1}(t)$ and $x_{2}(t)$ is defined by the following equation:
$\mathrm{z}(\mathrm{t})=\mathrm{x}_{1}(\mathrm{t}) * \mathrm{x}_{2}(\mathrm{t})$
That is, for each prescribed time (t) the value of $z(t)$ is given by the product of the corresponding values of $\mathrm{x}_{1}(\mathrm{t})$ and $\mathrm{x}_{2}(\mathrm{t})$.
For discrete-time signals we write:
$\mathrm{z}[\mathrm{n}]=\mathrm{X}_{1}[\mathrm{n}] \mathrm{x}_{2}[\mathrm{n}]$

Figure 11: The Multiplication operation

(2) Operation of independent variables

A. Time shifting: Suppose that we have a signal $x(t)$ and we define a new signal by adding/subtracting a finite time value to/from it. We now have a new signal, $\mathrm{z}(\mathrm{t})$. Graphically, this kind of signal operation results in a positive or negative "shift" of the signal along its time axis. However, note that while doing so, none of its characteristics are altered. This means that the time-shifting operation results in the change of just the positioning of the signal without affecting its amplitude.

If CTS is $x(t)$, then $z(t)=x(t-T)$ is the signal $x(t)$ shifted to the right by T units.
If CTS is $x(t)$, then $z(t)=x(t+T)$ is the signal $x(t)$ shifted to the left by T units.
When DTS is $x[n]$, then $z[n]=x[n-N]$ is the signal $x[n]$ shifted to the right by N samples.

When DTS is $\mathrm{x}[\mathrm{n}]$, then $\mathrm{z}[\mathrm{n}]=\mathrm{x}[\mathrm{n}+\mathrm{N}]$ is the signal $\mathrm{x}[\mathrm{n}]$ shifted to the left by N samples.

Figure 12: The time shifting operation
B. Time scaling: is a compression or expansion of a signal in time let $x(t)$ denote a CTS, the signal $\mathrm{z}(\mathrm{t})$ obtained by scaling the independent variable, time (t), by a factor "a" is defined by two cases which are:

- If $a>1$, the signal $z(t)$ is a compressed version of $x(t)$. In this case:

$$
\mathrm{z}(\mathrm{t})=\mathrm{x}(\mathrm{at})
$$

- If $a<1$, the signal $z(t)$ is an expanded (stretched) version of $x(t)$. Thus, the resulted signal $\mathrm{z}(\mathrm{t})$ is computed as:

$$
\mathrm{z}(\mathrm{t})=\mathrm{x}(\mathrm{t} / \mathrm{a})
$$

Note: the factor "a" must not be equal to 0 .
This mean that the signal $x(t)$ is scaled in time by multiplying the time variable by a positive constant (a), to produce $\mathrm{z}(\mathrm{t})$.

All these cases are described in the below figure.

Figure 13: The time scaling operation
C. Time reversal (time inversion, reflection): The signal $z(t)$ represents a reflected version of $x(t)$ about the amplitude axis. Let $x(t)$ denotes a CTS signal and $z(t)$ denotes the signal obtained by replacing time (t) with $(-\mathrm{t})$, as shown in the next two cases:

- The CTS is represented as:
$\mathrm{y}(\mathrm{t})=\mathrm{x}(-\mathrm{t})$
- While the DTS is as follows:
$y[n]=x[-n]$

Figure 14: The time reversal operation

