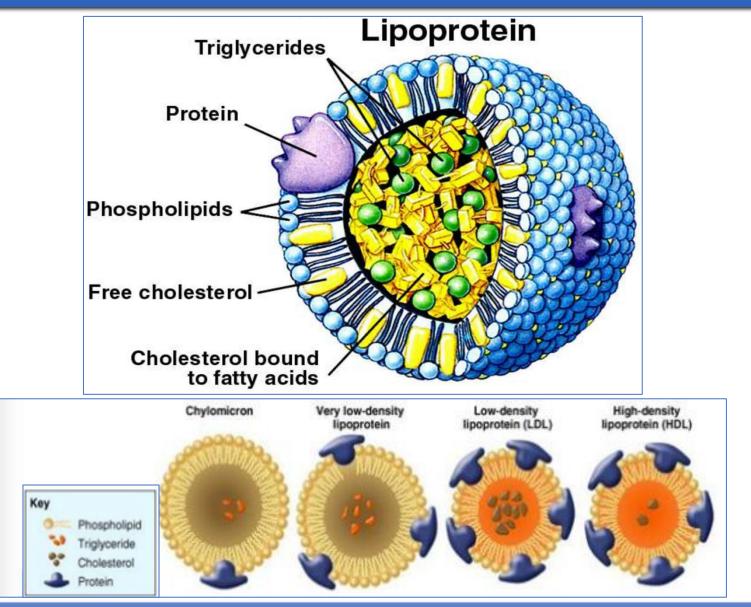

Al-Mustaqbal University College of Pharmacy 4th stage Pharmacology II Lecture: 7

DRUGS FOR HYPERLIPIDEMIA


OVERVIEW

- CHD is correlated with elevated levels of <u>LDL-C & TG</u>, and low levels of <u>HDL-C</u>.
- Elevated cholesterol levels (hyperlipidemia) may be due to lifestyle factors or inherited defect in lipoprotein metabolism or a combination of both.
- Appropriate lifestyle changes, along with drug therapy, can lead to a 30% to 40% reduction in CHD mortality.
- Antihyperlipidemic **drugs** are often taken **indefinitely** to **reduce the risk** of atherosclerotic cardiovascular disease (ASCVD).
- Note: ASCVD includes CHD, stroke, and peripheral arterial disease.

Al-Mustaqbal University / College of Pharmacy

Physiology of HDL, LDL, & VLDL

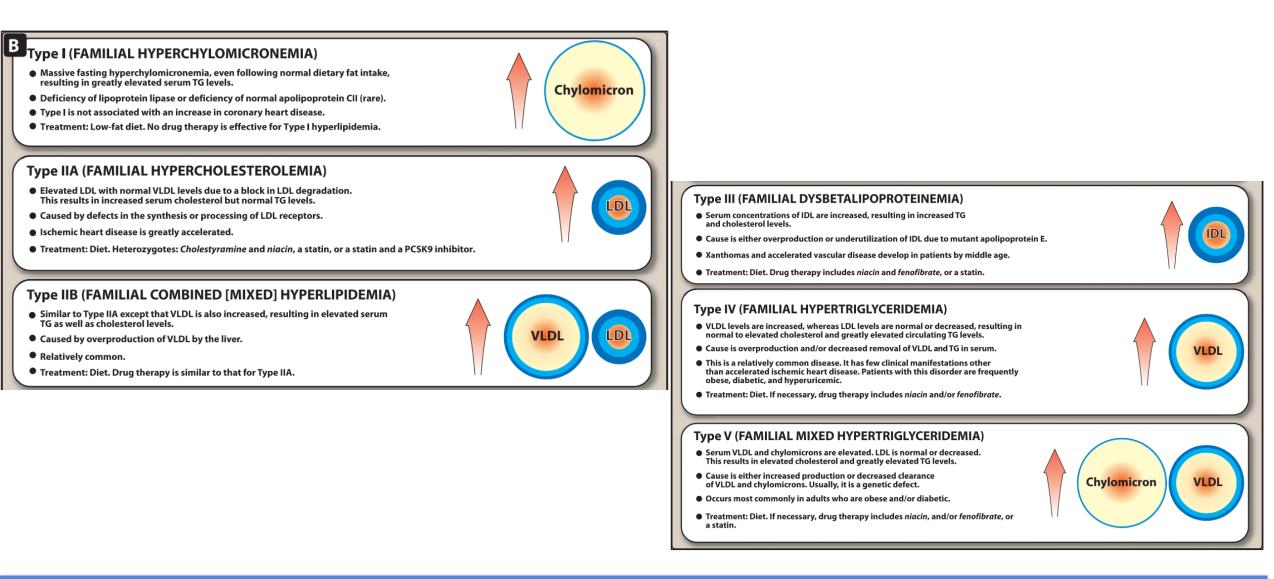
Pharmacology II 4th stage

Al-Mustaqbal University / College of Pharmacy

Physiology of HDL, LDL, & VLDL

Pharmacology II 4th stage

Al-Mustaqbal University / College of Pharmacy


LEVELS of HDL, LDL, VLDL, & TG FOR ADULTS

AMOUNT (mg/dL)	TOTAL	LDL	HDL	TRIGLYCERIDES
Ideal	<200	<100	>60	<150
Borderline	200–239	130–159	Women: 40–59 Men: 50–59	150–199
Too high or low	>240	High: 160–189 Very high: >190	Women: <40 Men: <50	High: 200–499 Very high: >500

Pharmacology II 4th stage

Al-Mustaqbal University / College of Pharmacy

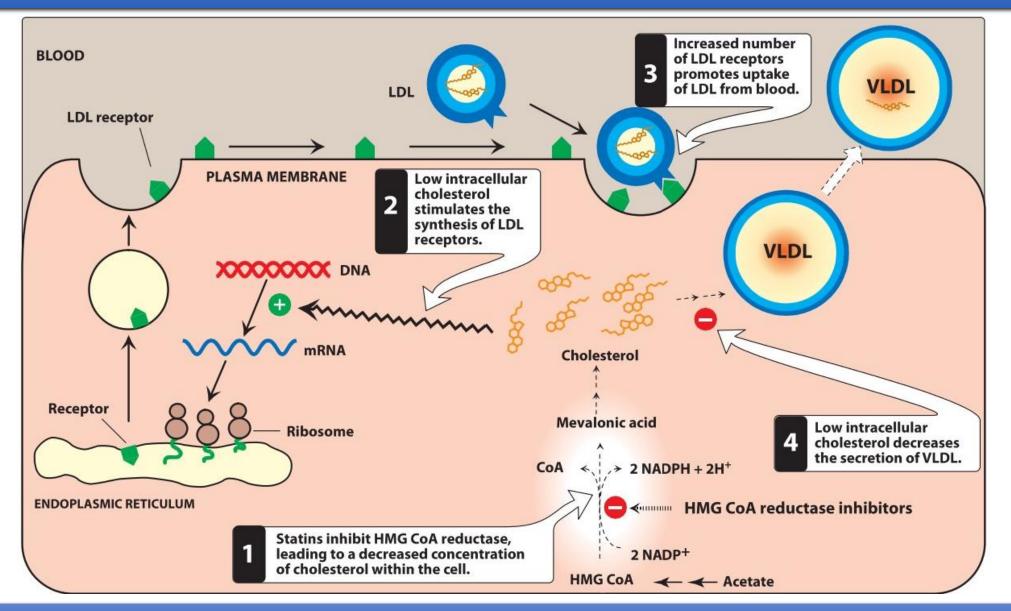
FAMILIAL HYPERLIPDEMIA TYPES

Pharmacology II 4th stage

Al-Mustaqbal University / College of Pharmacy

ANTIHYPERLIPIDEMIC DRUG

HMG CoA REDUCTASE INHIBITORS	NIACIN	OMEGA-3 FATTY ACIDS	
(STATINS)	Niacin NIASPAN, SLO-NIACIN	Docosahexaenoic and eicosapentaenoic acids LOVAZA, VARIOUS OTC PREPARATIONS Icosapent ethyl VASCEPA PCSK9 INHIBITORS	
Atorvastatin LIPITOR	FIBRATES		
Fluvastatin LESCOL	Gemfibrozil LOPID		
Lovastatin ALTOPREV	Fenofibrate TRICOR, TRIGLIDE		
Pitavastatin LIVALO	BILE ACID SEQUESTRANTS		
Pravastatin PRAVACHOL	Colesevelam WELCHOL		
Rosuvastatin CRESTOR	Colestipol COLESTID	Alirocumab PRALUENT	
Simvastatin ZOCOR	Cholestyramine PREVALITE, QUESTRAN	Evolocumab REPATHA	


Al-Mustaqbal University / College of Pharmacy

1. HMG CoA reductase inhibitors (Statins)

Mechanism of action:

- They are competitive inhibitors of HMG CoA reductase, the rate-limiting step in cholesterol synthesis.
- By inhibiting de novo cholesterol synthesis, they **deplete the intracellular supply of cholesterol**.
- Depletion of intracellular cholesterol causes the cell to increase the number of cell surface LDL receptors that can bind and internalize circulating LDL-C.
- Thus, plasma cholesterol is reduced, by both <u>decreased cholesterol synthesis</u> and <u>increased</u> <u>LDL-C catabolism</u>.
- They also decrease TG levels and may increase HDL-C in some patients.

1. HMG CoA reductase inhibitors

Pharmacology II 4th stage

Al-Mustaqbal University / College of Pharmacy

1. HMG CoA reductase inhibitors

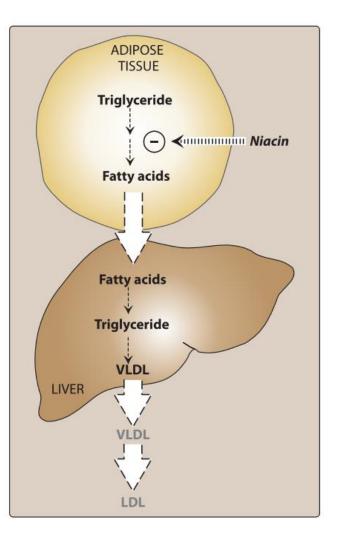
• Therapeutic uses:

- These drugs are used to lower the risk of ASCVD events for patients in the four statin benefit groups.
- Statins are effective in lowering plasma cholesterol levels in all types of hyperlipidemia.
- However, patients who are homozygous for familial hypercholesterolemia <u>lack LDL</u> receptors and, therefore, benefit much less from treatment with these drugs.

Pharmacokinetics:

- Lovastatin and simvastatin are hydrolyzed to the active drug.
- The **remaining** statins are all administered in their **active form**.
- Absorption of the statins is variable (30% to 85%) following oral administration.
- All statins are metabolized by cytochrome P450 isoenzymes in the liver, except pravastatin.
- Excretion takes place principally through bile and feces, but some urinary elimination also occurs.

Adverse effects:


- Elevated liver enzymes may occur with statin therapy.
- Myopathy and rhabdomyolysis (disintegration of skeletal muscle; rare)
- Plasma creatine kinase levels should be determined in patients with muscle complaints.
- These drugs are contraindicated during pregnancy, lactation, and active liver disease.

- It reduces LDL-C by 10% to 20% and is the most effective agent for increasing HDL-C.
- It also lowers triglycerides by 20% to 35% at typical doses of 1.5 to 3 g/day.
- Niacin can be used in combination with statins, and fixed-dose combinations (FDC) of long-acting niacin with lovastatin and simvastatin are available.

Mechanism of action:

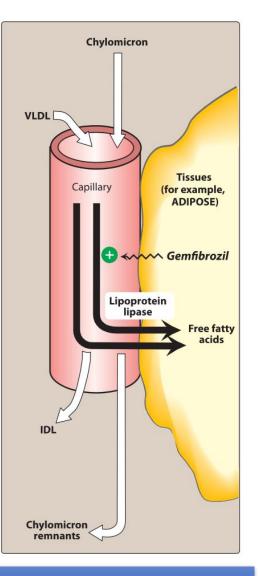
- At gram doses, niacin strongly inhibits lipolysis in adipose tissue, thereby reducing production of free fatty acids.
- The liver normally uses circulating free fatty acids as a major precursor for TG synthesis.
- Reduced liver TG levels decrease hepatic VLDL production, which in turn reduces LDL-C plasma concentrations.

Therapeutic uses:

- Because niacin lowers plasma levels of both cholesterol and TG, it is useful in the treatment of familial hyperlipidemias.
- It is also used to treat other **severe hypercholesterolemias**, often in **combination** with other agents.

Pharmacokinetics:

- Niacin is administered **orally** then **converted** in the body to **nicotinamide**, which is **incorporated** into the **cofactor** nicotinamide adenine dinucleotide (NAD+).
- Niacin, its nicotinamide derivative, and other metabolites are **excreted** in the **urine**.
- Administration of nicotinamide alone does not decrease plasma lipid levels.


Adverse effects:

- The most **common** adverse effects of niacin are an **intense cutaneous flush** accompanied by an uncomfortable **feeling of warmth and pruritus**.
- Administration of aspirin prior to taking niacin decreases the flush, which is prostaglandinmediated.
- Some patients also experience nausea and abdominal pain.
- Niacin inhibits tubular secretion of uric acid and, thus, predisposes patients to **hyperuricemia and gout**.
- The drug should be avoided in active hepatic disease or in patients with an active peptic ulcer.

3. Fibrates

Mechanism of action:

- The peroxisome proliferator-activated receptors (**PPARs**) are members of the **nuclear receptor family** that regulate **lipid metabolism**.
- **PPARs** function as **ligand-activated transcription factors**. Upon **binding** to their natural **ligands** (fatty acids or eicosanoids) or **antihyperlipidemic** drugs, PPARs are **activated**.
- They then bind to peroxisome proliferator response elements, which ultimately leads to decreased TG through increased expression of lipoprotein lipase and decreased apolipoprotein (apo) Cll.
- Fenofibrate is more effective than gemfibrozil in lowering TG levels.
- Fibrates also increase HDL-C by increasing the expression of apo AI and apo AII.

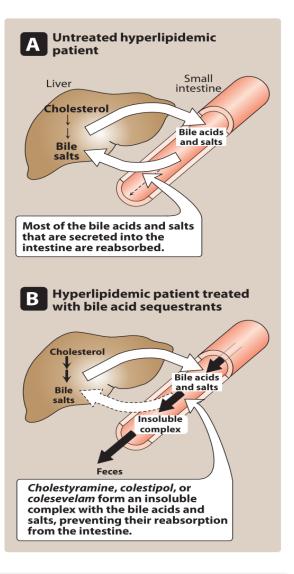
3. Fibrates

Therapeutic uses:

- The fibrates are used in the treatment of hypertriglyceridemias.
- They are particularly useful in treating type III hyperlipidemia (dysbetalipoproteinemia), in which IDL particles accumulate.

Pharmacokinetics:

- Gemfibrozil and fenofibrate are **completely absorbed** after **oral** administration and **distributed widely**, bound to **albumin**.
- Fenofibrate is a prodrug, which is converted to the active moiety fenofibric acid.
- Both drugs undergo extensive biotransformation and are excreted in the urine as glucuronide conjugates.


3. Fibrates

Adverse effects:

- The most common adverse effects are mild gastrointestinal (GI) disturbances.
- There is a predisposition to form **gallstones**.
- Myositis (inflammation of a voluntary muscle) can occur, and muscle weakness or tenderness should be evaluated.
- Myopathy and rhabdomyolysis have been reported in patients taking gemfibrozil and statins together.
- The use of **gemfibrozil** is **contraindicated** with **simvastatin**, and, in general, the use of <u>gemfibrozil with any statin should be avoided</u>. **??**

Mechanism of action:

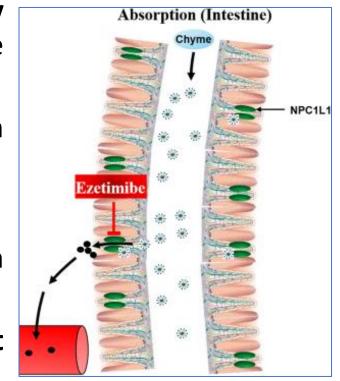
- They are anion-exchange resins that bind negatively charged bile acids and bile salts in the small intestine.
- The **resin/bile acid complex** is excreted in the **feces**, thus **lowering the bile acid conc.**.
- This causes **hepatocytes** to **increase the conversion** of **cholesterol to bile acids**, which are essential components of the **bile**.
- Consequently, intracellular cholesterol conc. decrease, which activates an increased hepatic uptake of LDL-C particles, leading to a decrease in plasma LDL-C by an up-regulation of cell surface LDL receptors.
- Include Cholestyramine, colestipol, and colesevelam

4. Bile acid sequestrants

Therapeutic uses:

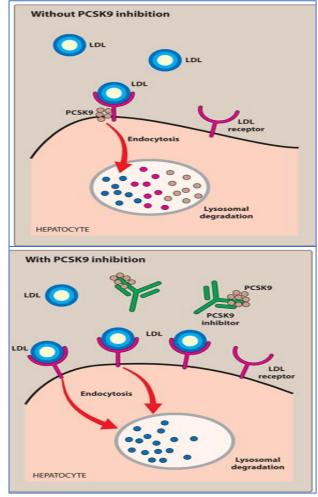
- They are useful (often in combination with diet or niacin) for treating type IIA and type IIB hyperlipidemias.
- Cholestyramine can also relieve pruritus caused by an accumulation of bile acids in patients with biliary stasis.
- Colesevelam is also indicated for DM type II due to its glucose-lowering effects.

Pharmacokinetics:


- After oral administration, they are neither absorbed nor metabolically altered by the intestine.
- Instead, they are totally excreted in feces.

4. Bile acid sequestrants

Adverse effects:


- Gl disturbances, such as constipation, nausea, and flatulence (Colesevelam less one).
- These agents may **impair the absorption** of the **fat-soluble vitamins** (A, D, E, and K).
- They interfere with the absorption of many drugs (for example, digoxin, warfarin, and thyroid hormone).
- Therefore, other **drugs** should be taken at **least 1 to 2 hours before, or 4 to 6 hours after**, the bile acid sequestrants.
- These agents may raise TG levels and are contraindicated in patients with significant hypertriglyceridemia (>400 mg/dL).

- Ezetimibe inhibits the absorption of dietary and biliary cholesterol in the small intestine, leading to a decrease in the delivery of intestinal cholesterol to the liver.
- This causes a **reduction of hepatic cholesterol stores** and an **increase** in the **clearance of cholesterol from the blood**.
- Ezetimibe lowers LDL-C by approximately 18% to 23%.
- Due to its modest LDL-C lowering, ezetimibe is often used as an adjunct to maximally tolerated statin.
- Patients with moderate to severe **hepatic insufficiency** should **not** be treated with ezetimibe. ?


6. Proprotein convertase subtilisin kexin type 9 inhibitors

- PCSK9 is an enzyme predominately produced in the liver, binds then degrades the LDL receptor on the surface of hepatocytes.
- By inhibiting the PCSK9 enzyme, elevate LDL receptors are available to clear LDL-C from the serum.
- Alirocumab and evolocumab are PCSK9 inhibitors, only available as SC injections, and are administered every 2-4 weeks.
- These agents are used in addition to maximally tolerated statin therapy in patients with heterozygous or homozygous familial hypercholesterolemia, or in patients with clinical ASCVD who require additional LDL-C lowering. (LDL-C lowering (50% to 70%)
- The adverse drug reactions are <u>injection site reactions</u>, <u>immunologic or allergic reactions</u>, <u>nasopharyngitis</u>, <u>and upper</u> <u>respiratory tract infections</u>.

7. Omega-3 fatty acids

- Omega-3 polyunsaturated fatty acids (PUFAs) are essential fatty acids that are predominately used for TG lowering.
- Essential fatty acids inhibit VLDL and triglyceride synthesis in the liver.
- The omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are found in marine sources such as <u>tuna</u>, <u>halibut</u>, <u>and salmon</u>.
- Approximately 4 g of marine-derived omega-3 PUFAs daily <u>decreases</u> serum TG by 25% to 30%, with <u>small increases</u> in LDL-C and HDL-C.
- **Icosapent ethyl** contains **only EPA** and, unlike other fish oil supplements, does **not significantly raise LDL-C**.
- Bleeding risk can be increased in those who are concomitantly taking anticoagulants or antiplatelet agents.

Characteristics of anti hyperlipidemic drug families

TYPE OF DRUG	EFFECT ON LDL	EFFECT ON HDL	EFFECT ON TRIGLYCERIDES
HMG CoA reductase inhibitors (statins)	↓↓↓↓	↑↑	¥↓
Fibrates	¥	<u></u>	↓ ↓↓↓
Niacin	↓↓	†††	↓↓↓
Bile acid sequestrants	↓ ↓↓	ł	1
Cholesterol absorption inhibitor	¥	ł	¥
PCSK9 inhibitors	↓ ↓↓↓↓	↑↑	¥

Pharmacology II 4th stage

Al-Mustaqbal University / College of Pharmacy

Thank You

Pharmacology II 4th stage

Al-Mustaqbal University / College of Pharmacy