2.3 Resultant of Coplanar General Force System

The resultant of non-concurrent and non-parallel force system is defined according to magnitude, direction, and position. The magnitude of the resultant can be found as follows:
$R_{x}=\sum F_{x} \rightarrow^{+}$
$R_{y}=\sum F_{y} \uparrow^{+}$

$R=\sqrt{{R_{x}}^{2}+R_{y}{ }^{2}}$

The direction of the resultant from the horizontal is defined by
$\theta_{x}=\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right)$

The position of the resultant can be determined according to the principle of moments.
$\nrightarrow R \cdot d=\sum F_{i} \cdot d_{i}$

Example No. 1: A rectangular block ABCD is subjected to four forces as shown in figure. Determine (a) magnitude and direction of the resultant force and (b) position of the resultant force from point A .

Solution:

a. The magnitude and direction of the resultant force
$\rightarrow^{+} R_{x}=\sum F_{x}=100+200 \cos 30-400-100 \cos 30$
$R_{x}=-213.39 N=213.39 N \leftarrow$
$\uparrow^{+} R_{y}=\sum F_{y}=-200 \sin 30-100 \sin 30$
$R_{y}=-150 N=150 N \downarrow$
$R=\sqrt{R_{x}{ }^{2}+R_{y}{ }^{2}}=\sqrt{(213.39)^{2}+(150)^{2}}=260.83 \mathrm{~N}$
$\theta_{x}=\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right)=\tan ^{-1}\left(\frac{150}{213.39}\right)=35.10^{\circ}$

b. The position of the resultant force from point A
$\uparrow R \cdot d=\sum F_{i} \cdot d_{i} \quad($ about point $A)$
$260.83 \times d=100 \times 3+200 \cos 30 \times 4+200 \sin 30 \times 1.5-400 \times 2+100 \sin 30 \times 1$
$d=1.5 m$ from point A

Example No. 2: Determine the resultant of the forces acting on the step pulley shown in Figure.

Solution:

$\rightarrow^{+} R_{x}=\sum F_{x}=750 \cos 30+250$
$R_{x}=899.52 N \rightarrow$
$\uparrow^{+} R_{y}=\sum F_{y}=750 \sin 30-1250$
$R_{y}=-875 N=875 N \downarrow$
$R=\sqrt{R_{x}{ }^{2}+R_{y}{ }^{2}}=\sqrt{(899.52)^{2}+(875)^{2}}$
$R=1254.89 N$

$\theta_{x}=\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right)=\tan ^{-1}\left(\frac{875}{899.52}\right)=44.21^{\circ}$
$\not \subset R \cdot d=\sum F_{i} \cdot d_{i} \quad$ (about point o)
$1254.89 \times d=-250 \times 1.25-1250 \times 0.5+750 \times 1.25$
$d=0 \quad$ i.e. the resultant passes through point O

Problems:

1. Determine the magnitude and direction of the resultant force, then determine position of the resultant force from (a) point A, (b) point B.

Answer:

$$
\text { (a) } R=1302 \mathrm{~N}, \quad \theta_{x}=84.5^{\circ} \text { 反, } d=7.32 \mathrm{~m}
$$

$$
\text { (b) } R=1302 N, \quad \theta_{x}=84.5^{\circ} \text { K, } d=1.35 \mathrm{~m}
$$

2. Replace the loading on the frame by a single resultant force where its line of action intersects member AB , measured from A .

Answer: $R=922 N, \theta_{x}=77.5^{\circ} \square, d=3.56 \mathrm{~m}$
3. Replace the force system acting on the post by a resultant force where its line of action intersects the post AB measured from point B .

Answer: $R=542 N, \theta_{x}=10.6^{\circ} \checkmark, d=2.14 m$

