Chapter Two: Resultant of Force Systems

Resultant: simplest force system which have same external effect of the original system.

2.1 Resultant of Coplanar Concurrent Force System

In $x-y$ plane, the resultant of coplanar concurrent force system where the lines of action of all forces pass through a common point can be found by the following formulas:
$R_{x}=\sum F_{x} \rightarrow^{+}$
$R_{x}=F_{1 x}-F_{2 x}-F_{3 x}+F_{4 x}$
$R_{y}=\sum F_{y} \uparrow^{+}$

$R_{y}=F_{1 y}+F_{2 y}-F_{3 y}-F_{4 y}$
$R=\sqrt{{R_{x}}^{2}+R_{y}{ }^{2}}$
$\theta_{x}=\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right)$

Example No. 1: Determine the magnitude and direction of the resultant forces system shown in Figure.

Solution:
$F_{1 x}=250 \times \sin 45=176.8 N \rightarrow$
$F_{1 y}=250 \times \cos 45=176.8 N \uparrow$

$F_{2 x}=200 \times \frac{4}{5}=160 N \leftarrow$
$F_{2 y}=200 \times \frac{3}{5}=120 N \uparrow$
$F_{3 x}=400 N \leftarrow$
$F_{3 y}=0$
$\rightarrow^{+} R_{x}=\sum F_{x}=176.8-160-400$
$R_{x}=-383.2 N=383.2 N \leftarrow$

$\uparrow^{+} R_{y}=\sum F_{y}=176.8+120+0=296.8 N \uparrow$
$R=\sqrt{R_{x}{ }^{2}+R_{y}{ }^{2}}=\sqrt{(383.2)^{2}+(296.8)^{2}}=484.7 \mathrm{~N}$
$\theta_{x}=\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right)=\tan ^{-1}\left(\frac{296.8}{383.2}\right)=37.8^{\circ}$

Example No. 2: Find the resultant force on the ring due to the three applied forces.

Solution:
$\rightarrow^{+} R_{x}=\sum F_{x}$
$R_{x}=30 \cos 37-50 \cos 45-80 \cos 60$
$R_{x}=-51.40 N=51.40 N \leftarrow$

$\uparrow^{+} R_{y}=\sum F_{y}$
$R_{y}=30 \sin 37+50 \sin 45-80 \sin 60$
$R_{y}=-15.87 N=15.87 \mathrm{~N} \downarrow$

$R=\sqrt{R_{x}{ }^{2}+R_{y}{ }^{2}}=\sqrt{(51.40)^{2}+(15.87)^{2}}$
$R=53.79 N$
$\theta_{x}=\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right)$
$\theta_{x}=\tan ^{-1}\left(\frac{15.87}{51.40}\right)=17.16^{\circ}$

Example No. 3: The resultant of the three forces is horizontal. Determine the magnitude of the resultant.

Solution:

Since the resultant is horizontal, therefore:
$R_{y}=0, \quad R=R_{x}$
$c=\sqrt{24^{2}+7^{2}}=25$
$\uparrow^{+} R_{y}=\sum F_{y}$
$0=T \times \frac{7}{25}+5200 \times \frac{12}{13}-5150$
$\therefore T=1250 N$
$\rightarrow^{+} R_{x}=R=\sum F_{x}$
$R=-T \times \frac{24}{25}+5200 \times \frac{5}{13}$
$R=800 N \rightarrow$

Problems:

1. Determine the magnitude and direction of the resultant forces system shown in Figure.

Answer: $R=71.8 \mathrm{~N}, \quad \theta_{x}=40.15^{\circ} \quad \Sigma$
2. If the resultant of fourth forces is 200 N as shown in figure. Find the unknown for the force.

Answer: $F_{4}=165 \mathrm{~N}, \quad \theta_{\chi}=11.153^{\circ}$
3. The resultant of the three forces as shown in figure is vertical. determine the angle θ, and magnitude of the resultant.

Answer: $R=30 N \downarrow, \quad \theta=36.87^{\circ}$
4. If the resultant force acting on the bracket is to be 750 N directed along the positive $x-$ axis, determine the magnitude of \mathbf{F} and its direction θ.

Answer: $F=236.1 N, \quad \theta=31.76^{\circ}$

