

The analysis or design of a transistor amplifier requires a knowledge of both the dc and ac response of the system. Too often it is assumed that the transistor is a magical device that can raise the level of the applied ac input without the assistance of an external energy source. In actuality, the improved output ac power level is the result of a transfer of energy from the applied dc supplies. The analysis or design of any electronic amplifier therefore has two components: the dc portion and the ac portion. Fortunately, the superposition theorem is applicable and the investigation of the dc conditions can be totally separated from the ac response. However, one must keep in mind that during the design or synthesis stage the choice of parameters for the required dc levels will affect the ac response, and vice versa.

The term biasing appearing in the title of this lecture is an all-inclusive term for the application of dc voltages to establish a fixed level of current and voltage. For transistor amplifiers the resulting dc current and voltage establish an operating point on the characteristics that define the region that will be employed for amplification of the applied signal. Since the operating point is a fixed point on the characteristics, it is also called the quiescent point (abbreviated \mathbf{Q}-point). By definition, quiescent means quiet, still, inactive. Fig. 9-1 shows a general output device characteristic with four operating points indicated. The biasing circuit can be designed to set the device operation at any of these points or others within the active region. The maximum ratings are indicated on the characteristics of Fig. 9-1 by a horizontal line for the maximum collector current $I_{\text {Cmax }}$ and a vertical line at the maximum collector-to-emitter voltage $V_{\text {CEmax }}$. The maximum power constraint is defined by the curve $P_{\text {Cmax }}$ in the same figure. At the lower end of the scales are the cutoff region, defined by $I_{B} \leq 0 \mu \mathrm{~A}$, and the saturation region, defined by $V_{C E} \leq V_{C E(s a t)}$.

Fig. 9-1

*

ch:

Fig. 9-2a shows a fixed-bias circuit.

Analysis:

4 For the input (base-emitter circuit) loop as shown in Fig. 9-2b:

$$
\begin{align*}
& +V_{C C}-I_{B} R_{B}-V_{B E}=0 \\
& I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}} \tag{9.1a}
\end{align*}
$$

4 For the output (collector-emitter circuit) loop as shown in Fig. 9-2c:
$I_{C}=\beta I_{B}$
$+V_{C E}+I_{C} R_{C}-V_{C C}=0$
$V_{C E}=V_{C C}-I_{C} R_{C}$
4 For the transistor terminal voltages:
$V_{E}=0 V$
$V_{B}=V_{C C}-I_{B} R_{B}=V_{B E}$
$V_{C}=V_{C C}-I_{C} R_{C}=V_{C E}$

Load-Line Analysis:

From Eq. [9.1b] and Fig. 9-3:
4 At cutoff region:
$V_{C E}=\left.V_{C C}\right|_{I_{C}=0}$
4 At saturation region:

$$
\begin{equation*}
I_{C}=\left.\frac{V_{C C}}{R_{C}}\right|_{V_{C E}=0} \tag{9.2b}
\end{equation*}
$$

Design:

For an optimum design:

$$
\begin{aligned}
& V_{C E Q}=\frac{1}{2} V_{C C} \\
& I_{C Q}=\frac{1}{2} I_{C(s a t)}=\frac{V_{C C}}{2 R_{C}}
\end{aligned}
$$

(b)
(c)

Fig. 9-2

Fig. 9-3

Fig. 9-4a shows an emitter-stabilized bias circuit.

Analysis:

4 For the input (base-emitter circuit) loop as shown in Fig. 9-4b:

$$
\begin{align*}
& +V_{C C}-I_{B} R_{B}-V_{B E}-I_{E} R_{E}=0 \\
& I_{E}=(\beta+1) I_{B} \\
& I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+(\beta+1) R_{E}} \tag{9.4a}
\end{align*}
$$

4 For the output (collector-emitter circuit)

$$
\begin{aligned}
& V_{E}=I_{E} R_{E} \\
& V_{B}=V_{C C}-I_{B} R_{B}=V_{E}+V_{B E} \\
& V_{C}=V_{C C}-I_{C} R_{C}=V_{E}+V_{C E}
\end{aligned}
$$

Load-Line Analysis:

From Eq. [9.4b] and Fig. 9-5:
4 At cutoff region:
$V_{C E}=\left.V_{C C}\right|_{I_{C}=0}$
At saturation region:

$$
I_{C}=\left.\frac{V_{C C}}{R_{C}+R_{E}}\right|_{V_{C E}=0}
$$

Design:

For an optimum design:

$$
\begin{aligned}
& V_{C E Q}=\frac{1}{2} V_{C C} \\
& I_{C Q}=\frac{1}{2} I_{C(s a t)}=\frac{V_{C C}}{2\left(R_{C}+R_{E}\right)} \\
& V_{E}=\frac{1}{10} V_{C C}
\end{aligned}
$$

4 For the transistor terminal voltages:
$V_{E}=I_{E} R_{E}$
$V_{B}=V_{C C}-I_{B} R_{B}=V_{E}+V_{B E}$
$V_{C}=V_{C C}-I_{C} R_{C}=V_{E}+V_{C E}$
loop as shown in Fig. 9-4c:

$$
\begin{aligned}
& +I_{E} R_{E}+V_{C E}+I_{C} R_{C}-V_{C C}=0 \\
& I_{E} \cong I_{C} \\
& V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)
\end{aligned}
$$

Fig. 9-4

Fig. 9-5

Fig. 9-6a shows a voltage-divider bias circuit.

Analyses:

4 For the input (base-emitter circuit) loop:
Exact Analysis:
From Fig. 9-6b:
$R_{\text {Th }}=R_{1} \| R_{2}$
From Fig. 9-6c:
$E_{T h}=V_{R_{2}}=\frac{R_{2} V_{C C}}{R_{1}+R_{2}}$
From Fig. 9-6d:
$+E_{T h}-I_{B} R_{T h}-V_{B E}-I_{E} R_{E}=0$
$I_{E}=(\beta+1) I_{B}$
$I_{B}=\frac{E_{T h}-V_{B E}}{R_{T h}+(\beta+1) R_{E}}$
$I_{C}=\beta I_{B}$

Approximate Analysis:

(a)

(c)

From Fig. 9-6e:
If $R_{i} \gg R_{2} \Rightarrow>I_{2} \gg I_{B}$.
Since $I_{B} \approx 0 \Rightarrow I_{1} \cong I_{2}$.
Thus R_{1} in series with R_{2}.
That is,

$$
V_{B}=\frac{R_{2} V_{C C}}{R_{1}+R_{2}}
$$

(d)

Since $R_{i}=(\beta+1) R_{E} \cong \beta R_{E}$ the condition that will define whether the approximation approach can be applied will be the following:

$$
\begin{equation*}
\beta R_{E} \geq 10 R_{2} \tag{9.8b}
\end{equation*}
$$

and

$$
\begin{aligned}
& V_{E}=V_{B}-V_{B E} \\
& I_{C} \cong I_{E}=\frac{V_{E}}{R_{E}}
\end{aligned}
$$

4 For the output (collector-emitter circuit) loop:

Fig. 9-6

$$
\begin{equation*}
V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right) \tag{9.9}
\end{equation*}
$$

Load-Line Analysis:

The similarities with the output circuit of the emitter-biased configuration result in the same intersections for the load line of the voltage-divider configuration. The load line will therefore have the same appearance as that of Fig. 9-5. The level of I_{B} is of course determined by a different equation for the voltage-divider bias and the emitter-bias configuration.

Design:

For an optimum design:

$$
\begin{align*}
& V_{C E Q}=\frac{1}{2} V_{C C} \tag{9.10}\\
& I_{C Q}=\frac{1}{2} I_{C(s a t)}=\frac{V_{C C}}{2\left(R_{C}+R_{E}\right)} \\
& V_{E}=\frac{1}{10} V_{C C} \\
& R_{2} \leq \frac{1}{10} \beta R_{E}
\end{align*}
$$

Determine the dc bias voltage $V_{C E}$ and the current I_{C} for the voltage-divider configuration of Fig. 9-6a with the following parameters: $V_{C C}=+22 \mathrm{~V}, \beta=140$, $R_{1}=39 \mathrm{k} \Omega, R_{2}=3.9 \mathrm{k} \Omega, R_{C}=10 \mathrm{k} \Omega$, and $R_{E}=1.5 \mathrm{k} \Omega$.

Solution:

Exact:

$$
\begin{aligned}
& R_{T h}=R_{1}\left\|R_{2}=39 k\right\| 3.9 k=3.55 \Omega \\
& E_{T h}=\frac{R_{2} V_{C C}}{R_{1}+R_{2}}=\frac{(3.9 k)(22)}{39 k+3.9 k}=2 \mathrm{~V} \\
& I_{B}= \\
& =\frac{E_{T h}-V_{B E}}{R_{T h}+(\beta+1) R_{E}} \\
& = \\
& \begin{aligned}
I_{C Q} & =\beta I_{B}=(140)(6.05 \mu)=0.85 \mathrm{~mA} \\
V_{C E Q} & =V_{C C}-I_{C}\left(R_{C}+R_{E}\right) \\
& =22-(0.85 m)(10 \mathrm{k}+1.5 \mathrm{k}) \\
& =12.23 \mathrm{~V}
\end{aligned}
\end{aligned}
$$

Approximate:
Testing: $\quad \beta R_{E} \geq 10 R_{2}$

$$
\begin{aligned}
&(140)(1.5 k) \geq 10(3.9 k) \\
& 210 k \Omega>39 k \Omega \quad \text { (satisfied) } \\
& V_{B}= \frac{R_{2} V_{C C}}{R_{1}+R_{2}}=\frac{(3.9 k)(22)}{39 k+3.9 k}=2 \mathrm{~V} \\
& V_{E}= V_{B}-V_{B E}=2-0.7=1.3 \mathrm{~V} \\
& I_{C Q}= I_{E}=\frac{V_{E}}{R_{E}}=\frac{1.3}{1.5 k}=0.867 \mathrm{~mA} \\
& V_{C E Q}= V_{C C}-I_{C}\left(R_{C}+R_{E}\right) \\
&= 22-(0.867 \mathrm{~m})(10 k+1.5 \mathrm{k}) \\
&= 12.03 \mathrm{~V}
\end{aligned}
$$

人

Fig. 9-7a shows a voltage-feedback bias circuit.

Analysis:

4 For the input (base-emitter circuit) loop as shown in Fig. 9-7b:

$$
\begin{aligned}
& +V_{C C}-I_{C}^{\prime} R_{C}-I_{B} R_{B}-V_{B E}-I_{E} R_{E}=0 \\
& I_{C}^{\prime}=I_{C}+I_{B}=I_{E} \cong I_{C}=\beta I_{B} \\
& +V_{C C}-\beta I_{B} R_{C}-I_{B} R_{B}-V_{B E}-\beta I_{B} R_{E}=0 \\
& I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+\beta\left(R_{C}+R_{E}\right)}
\end{aligned}
$$

(a)
loop as shown in Fig. 9-7c:

$$
\begin{align*}
& +I_{E} R_{E}+V_{C E}+I_{C}^{\prime} R_{C}-V_{C C}=0 \\
& I_{C}^{\prime}=I_{E} \cong I_{C} \\
& V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right) \tag{9.11b}
\end{align*}
$$

Load-Line Analysis:

Continuing with the approximation $I_{C}^{\prime}=I_{C}$ will result in the same load line defined for the voltage-divider and emitter-biased configurations. The levels of $I_{B Q}$ will be defined by the chosen base configuration.

Design:

For an optimum design:

$$
\begin{align*}
& V_{C E Q}=\frac{1}{2} V_{C C} \tag{9-12}\\
& I_{C Q}=\frac{1}{2} I_{C(s a t)}=\frac{V_{C C}}{2\left(R_{C}+R_{E}\right)} \\
& V_{E}=\frac{1}{10} V_{C C} \\
& R_{B} \leq \beta\left(R_{C}+R_{E}\right)
\end{align*}
$$

(c)

Fig. 9-7

*

Determine V_{C} and V_{B} for the circuit of Fig. 9-8.

Solution:

$$
\begin{align*}
& -I_{B} R_{B}-V_{B E}+V_{E E}=0 \quad(\mathrm{KVL}) \tag{KVL}\\
& I_{B}=\frac{V_{E E}-V_{B E}}{R_{B}}=\frac{9-0.7}{100 \mathrm{k}}=83 \mu \mathrm{~A} \\
& I_{C}=\beta I_{B}=(45)(83 \mu)=3.735 \mathrm{~mA} \\
& V_{C}=-I_{C} R_{C}=-(3.735 \mathrm{~m})(1.2 \mathrm{k})=-4.48 \mathrm{~V}
\end{align*}
$$

Fig. 9-8

-

Determine V_{C} and V_{B} for the circuit of Fig. 9-9a.

Solution:

From Fig. 9-9b:

$$
\begin{aligned}
& R_{T h}=R_{1}\left\|R_{2}=8.2 k\right\| 2.2 k=1.73 \mathrm{k} \Omega \\
& I=\frac{V_{C C}+V_{E E}}{R_{1}+R_{2}}=\frac{20+20}{8.2 k+2.2 k}=3.85 \mathrm{~mA} \\
& E_{T h}=I R_{2}-V_{E E}=(3.85 \mathrm{~m})(2.2 \mathrm{k})-20=-11.53 \mathrm{~V}
\end{aligned}
$$

From Fig. 9-9c:

$$
\begin{align*}
&-E_{T h}-I_{B} R_{T h}-V_{B E}-I_{E} R_{E}+V_{E E}=0 \quad(\mathrm{KVL}) \tag{KVL}\\
& I_{E}=(\beta+1) I_{B} \\
& I_{B}=\frac{V_{E E}-E_{T h}-V_{B E}}{R_{T h}+(\beta+1) R_{E}} \\
&=\frac{20-11.53-0.7}{1.73 k+(121)(1.8 k)}=35.39 \mu \mathrm{~A} \\
& I_{C}=\beta I_{B}=(120)(35.39 \mu)=4.25 \mathrm{~mA} \\
& V_{C}=V_{C C}-I_{C} R_{C}=20-(4.25 \mathrm{~m})(2.7 \mathrm{k})=8.53 \mathrm{~V} \\
& V_{B}=-E_{T h}-I_{B} R_{T h}=-(11.53)-(35.39 \mu)(1.73 \mathrm{k}) \\
&=-11.59 \mathrm{~V}
\end{align*}
$$

(b)

(c)

Fig. 9-9

Determine $V_{C B}$ and I_{B} for the common-base configuration of Fig. 9-10.

Solution:

Applying KVL to the input circuit:

$$
\begin{aligned}
& -V_{E E}+I_{E} R_{E}+V_{B E}=0 \\
& I_{E}=\frac{V_{E E}-V_{B E}}{R_{E}}=\frac{4-0.7}{1.2 k}=2.75 \mathrm{~mA}
\end{aligned}
$$

Applying KVL to the output circuit:

$$
\begin{aligned}
& +V_{C B}+I_{C} R_{C}-V_{C C}=0 \\
& V_{C B}=V_{C C}-I_{C} R_{C}
\end{aligned}
$$

with $I_{C} \cong I_{E}$

$$
\begin{aligned}
& V_{C B}=10-(2.75 \mathrm{~m})(2.4 \mathrm{k})=3.4 \mathrm{~V} \\
& I_{B}=\frac{I_{C}}{\beta}=\frac{2.75 \mathrm{~m}}{60}=45.8 \mu \mathrm{~A}
\end{aligned}
$$

Fig. 9-10

-

Determine I_{E} and $V_{C E}$ for the common-collector (emitter-follower) configuration of Fig. 9-11.

Solution:

Applying KVL to the input circuit:

$$
\begin{aligned}
&-I_{B} R_{B}-V_{B E}-I_{E} R_{E}+V_{E E}=0 \\
& I_{E}=(\beta+1) I_{B} \\
& I_{B}=\frac{V_{E E}-V_{B E}}{R_{B}+(\beta+1) R_{E}} \\
&=\frac{20-0.7}{240 k+(91)(2 k)}=45.73 \mu \mathrm{~A} \\
& I_{E}=(\beta+1) I_{B}=(91)(45.73 \mu)=4.16 \mathrm{~mA}
\end{aligned}
$$

Fig. 9-11

Applying KVL to the output circuit:

$$
\begin{aligned}
& -V_{E E}+I_{E} R_{E}+V_{C E}=0 \\
& V_{C E}=V_{E E}-I_{E} R_{E}=20-(4.16 \mathrm{~m})(2 \mathrm{k})=11.68 \mathrm{~V}
\end{aligned}
$$

*

Determine $V_{C E}$ for the voltage-divider bias configuration of Fig. 9-12.

Solution:

Testing: $\quad \beta R_{E} \geq 10 R_{2}$
$(120)(1.1 k) \geq 10(10 k)$

$$
132 k \Omega \geq 100 k \Omega(\text { satisfied })
$$

$$
V_{B}=\frac{R_{2} V_{C C}}{R_{1}+R_{2}}=\frac{(10 k)(-18)}{47 k+10 k}=-3.16 \mathrm{~V}
$$

$$
V_{E}=V_{B}-V_{B E}=-3.16-(-0.7)=-2.46 \mathrm{~V}
$$

$$
I_{C}=I_{E}=\frac{V_{E}}{R_{E}}=\frac{2.46}{1.1 k}=2.24 \mathrm{~mA}
$$

$$
-I_{E} R_{E}+V_{C E}-I_{C} R_{C}+V_{C C}=0 \quad(\mathrm{KVL})
$$

$$
V_{C E}=-V_{C C}+I_{C}\left(R_{C}+R_{E}\right)
$$

Fig. 9-12

$$
=-18+(2.24 m)(2.4 k+1.1 k)=-10.16 V
$$

1. For the fixed-biased configuration of Fig. 9-2a with the following parameters: $V_{C C}=+12 \mathrm{~V}, \quad \beta=50, \quad R_{B}=240 \mathrm{k} \Omega, \quad$ and $\quad R_{C}=2.2 \mathrm{k} \Omega$, determine: $I_{B Q}, I_{C Q}, V_{C E Q}, V_{B}, V_{C}$, and $V_{B C}$.
2. Given the device characteristics of Fig. 9-13a, determine $V_{C C}, R_{B}$, and R_{C} for the fixed-bias configuration of Fig. 9-13b.

(a)

(b)

Fig. 9-13
3. For the emitter bias circuit of Fig. 9-4a with the following parameters: $V_{C C}=+20 \mathrm{~V}, \beta=50, R_{B}=430 \mathrm{k} \Omega, R_{C}=2 \mathrm{k} \Omega$, and $R_{E}=1 \mathrm{k} \Omega$, determine: $I_{B}, I_{C}, V_{C E}, V_{C}, V_{E}, V_{B}$ and $V_{B C}$.
4. Design an emitter-stabilized circuit (Fig. 9-4a) at $I_{C Q}=2 \mathrm{~mA}$. Use $V_{C C}=+20 \mathrm{~V}$ and an npn transistor with $\beta=150$.
5. Determine the dc bias voltage $V_{C E}$ and the current I_{C} for the voltage-divider configuration of Fig. 9-6a with the following parameters: $V_{C C}=+18 \mathrm{~V}, \beta=50$, $R_{1}=82 \mathrm{k} \Omega, R_{2}=22 \mathrm{k} \Omega, R_{C}=5.6 \mathrm{k} \Omega$, and $R_{E}=1.2 \mathrm{k} \Omega$.
6. Design a beta-independent (voltage-divider) circuit to operate at $V_{C E Q}=8 \mathrm{~V}$ and $I_{C Q}=10 \mathrm{~mA}$. Use a supply of $V_{C C}=+20 \mathrm{~V}$ and an npn transistor with $\beta=80$.
7. Determine the quiescent levels of $I_{C Q}$ and $V_{C E Q}$ for the voltage-feedback circuit of Fig. 9-7a with the following parameters: $V_{C C}=+10 \mathrm{~V}, \beta=90, R_{B}=250 \mathrm{k} \Omega$, $R_{C}=4.7 \mathrm{k} \Omega$, and $R_{E}=1.2 \mathrm{k} \Omega$.
8. Prove that $R_{B} \leq \beta\left(R_{C}+R_{E}\right)$ is the required condition for an optimum design of the voltage-feedback circuit.
9. Prove mathematically that $I_{C Q}$ for the voltage-feedback bias circuit is approximately independent of the value of beta.
10. Fig. 9-14 shows a three-stage circuit with a $V_{C C}$ supply of +20 V . GND stands for ground. If all transistors have a β of 100 , what are the I_{C} and $V_{C E}$ of each stage?

Fig. 9-14

