Solved Problems Set\#1

Q1. Consider the switching networks shown in Figure below. Let A1, A2, and A3 denote the events that the switches s1, s2, and s3 are closed, respectively. Let Aab denote the event that there is a closed path between terminals a and b. Express Aab in terms of A1, A2, and A3 for each of the networks shown

(a)

(b)

(c)

(d)

(a)	$A_{a b}=A_{1} \cap A_{2} \cap A_{3}$	(c)	$A_{a b}=A_{1} \cap\left(A_{2} \cup A_{3}\right)$
(b)	$A_{a b}=A_{1} \cup A_{2} \cup A_{3}$	(d)	$A_{a b}=\left(A_{1} \cap A_{2}\right) \cup A_{3}$

Q2. Identify the shaded set:

(a) Shaded region: $B \cup C$

(c) Shaded region: $A \cap B$

(b) Shaded region: $A \cap(B \cup C)$

(d) Shaded region: $A \cap C$

(e) Shaded region: $(A \cap B) \cup(A \cap C)$

Q3. Prove :

(a) $P(A \mid B) \geq 0$
(b) $P(S \mid B)=1$
(c) $P\left(A_{1} \cup A_{2} \mid B\right)=P\left(A_{1} \mid B\right)+P\left(A_{2} \mid B\right)$ if $A_{1} \cap A_{2}=\varnothing$

Solution:

(a)	$P(A \mid B)=\frac{P(A \cap B)}{P(B)} \quad P(B)>0$, $P(A \cap B) \geq 0$. Thus, $P(A \mid B) \geq 0$		$P\left(A_{1} \cup A_{2} \mid B\right)=\frac{P\left[\left(A_{1} \cup A_{2}\right) \cap B\right]}{P(B)}$
(b)	$S \cap B=B$. Then $P(S \mid B)=\frac{P(S \cap B)}{P(B)}=\frac{P(B)}{P(B)}=1$	(c)	$\begin{gathered} \left(A_{1} \cap B\right) \cap\left(A_{2} \cap B\right)=\varnothing \\ P\left(A_{1} \cup A_{2} \mid B\right)=\frac{P\left(A_{1} \cap B\right)+P\left(A_{2} \cap B\right)}{P(B)}=\frac{P\left(A_{1} \cap B\right)}{P(B)}+\frac{P\left(A_{2} \cap B\right)}{P(B)} \\ =P\left(A_{1} \mid B\right)+P\left(A_{2} \mid B\right) \quad \text { if } A_{1} \cap A_{2}=\varnothing \end{gathered}$

Q3. Prove

$$
P(\bar{A} \mid B)=1-P(A \mid B)
$$

Solution:

$$
\begin{gathered}
A \cup \bar{A}=S, \quad A \cap \bar{A}=\varnothing \\
P(A \cup \bar{A} \mid B)=P(S \mid B)=1=P(A \mid B)+P(\bar{A} \mid B) \\
P(\bar{A} \mid B)=1-P(A \mid B)
\end{gathered}
$$

Q4. You toss a fair coin three times:
a. What is the probability of three heads, HHH?
b. What is the probability that you observe exactly one head?
c. Given that you have observed at least one head?

Solution:
a. Since each toss is independent of other then

$$
\mathrm{P}(\mathrm{HHH})=\mathrm{P}(\mathrm{H}) \cdot \mathrm{P}(\mathrm{H}) \cdot \mathrm{P}(\mathrm{H})=(0.5)^{3}=0.125
$$

Or by using binomial distribution or repeated trials: $\mathrm{n}=3, \mathrm{k}=0,1,2,3$, since we have 3 Heads then $\mathrm{k}=3$ with $\mathrm{P}_{\mathrm{s}}=\mathrm{P}(\mathrm{H})=0.5, \mathrm{P}_{\mathrm{F}}=1-\mathrm{P}_{\mathrm{s}}=0.5$

$$
P(H H H)=P_{3}=C_{k}^{n} P_{s}^{k} P_{f}^{n-k}=C_{3}^{3}(0.5)^{3}(0.5)^{0}=0.125
$$

b. Using binomial distribution or repeated trials: $\mathrm{n}=3, \mathrm{k}=0,1,2,3$, since we have one Head then $\mathrm{k}=1$ with $\mathrm{P}_{\mathrm{s}}=\mathrm{P}(\mathrm{H})=0.5, \mathrm{P}_{\mathrm{F}}=1-\mathrm{P}_{\mathrm{s}}=0.5$

$$
P(H)=P_{1}=C_{k}^{n} P_{s}^{k} P_{f}^{n-k}=C_{1}^{3}(0.5)^{1}(0.5)^{2}=\frac{3!}{1!.2!}(0.5)^{3}=0.375
$$

c. Using binomial distribution or repeated trials: $\mathrm{n}=3, \mathrm{k}=0,1,2,3$, since we have at least one Head then $\mathrm{k}=1,2,3$ with $\mathrm{P}_{\mathrm{s}}=\mathrm{P}(\mathrm{H})=0.5, \mathrm{P}_{\mathrm{F}}=1-\mathrm{P}_{\mathrm{s}}=0.5$

$$
\begin{aligned}
& P(\text { at least } 1 \text { Head })=P_{1 \text { or2or } 3}=\sum_{k=1}^{3} C_{k}^{n} P_{S}^{k} P_{f}^{n-k}=\sum_{k=1}^{3} C_{k}^{3} P_{S}^{k} P_{f}^{3-k} \\
& \quad=C_{1}^{3}(0.5)^{1}(0.5)^{2}+C_{2}^{3}(0.5)^{2}(0.5)^{1}+C_{3}^{3}(0.5)^{3}(0.5)^{0}=0.875
\end{aligned}
$$

