TUTORIAL 1

Q1: A source produces the following text (*** \# * \$ \# \$ \# \# * * * \& \# \# \# \$ \&), find the probability for each variable $\mathrm{P}\left({ }^{*}\right), \mathrm{P}(\#), \mathrm{P}(\$), \mathrm{P}(\&)$

Solution:

$$
\begin{gathered}
p(*)=\frac{7}{20}=0.35 \\
p(\#)=\frac{7}{20}=0.35 \\
p(\$)=\frac{4}{20}=0.2 \\
p(\&)=\frac{2}{20}=0.1
\end{gathered}
$$

Q2: coin tossed two time, find the probability at these event:
1 - at least get one header 2 - at least two tail 3 -at least one head and one tail Solution:
$\mathrm{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
1- $\mathrm{A}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}\}$

$$
P(A)=3 / 4
$$

2- $\mathrm{B}=\{\mathrm{TT}\}$
$P(B)=1 / 4$
3- $\mathrm{C}=\{\mathrm{HT}, \mathrm{TH}\}$ $\mathrm{P}(\mathrm{C})=2 / 4$

Q3: Message of two variables if the probability of $\mathrm{x}, \mathrm{P}(\mathrm{x})=0.4$. Find the probability of the second variable.

Solution:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{x})+\mathrm{P}(\mathrm{y})=1 \\
& 0.4+\mathrm{P}(\mathrm{y})=1 \\
& \mathrm{P}(\mathrm{y})=1-0.4 \\
& \mathrm{P}(\mathrm{y})=0.6
\end{aligned}
$$

Q4: $\mathbf{5}$ variables of equal probability. Find the probability for every variable.

Solution:

$\mathrm{P}(1)=\mathrm{P}(2)=\mathrm{P}(3)=\mathrm{P}(4)=\mathrm{P}(5)=\frac{1}{n}=\frac{1}{5}$
Q5: Suppose a variable X can take the values $1,2,3,4$. The probabilities associated with each outcome are described by the following table:

Outcome:	1	2	3	4
Probability:	0.05	0.35	0.2	0.4

plot the probability distribution and the cumulative distribution.

Solution:

The cumulative distribution function for the above probability distribution is calculated as follows:

The probability that X is less than or equal to 1 is 0.05
the probability that X is less than or equal to 2 is $0.05+0.35=0.4$, the probability that X is less than or equal to 3 is $0.05+0.35+0.2=0.6$, and, the probability that X is less than or equal to 4 is $0.05+0.35+0.2+0.4=1$.

Cumulative distribution

