Frequency Response of JFET Amplifiers

Low-Frequency Response of JFET Amplifiers:

The Capacitors C_G , C_C , and C_S will determine the lower-cutoff frequency (f_L) of the common-source JFET amplifier shown in Fig. 18-1, but the results can be applied to any JFET amplifier.

For the cutoff-frequency of C_G ,

$$R_{sig} + R_i = X_{C_G} = >$$

$$f_{L_G} = \frac{1}{2\pi (R_{sig} + R_i)C_G}$$

where $R_i = R_G$.

For the cutoff-frequency of C_C , $R_L + R_o = X_{C_C} = >$

$$f_{L_C} = \frac{1}{2\pi (R_L + R_o)C_C}$$

where $R_o = R_D$.

For the cutoff-frequency of C_S ,

$$R_{eq} = X_{C_S} =>$$

$$f_{L_S} = \frac{1}{2\pi R_{eq} C_S}$$

where $R_{eq} = R_S || 1/g_m$.

The lower-cutoff frequency,

$$f_L = Max.[f_{L_G}, f_{L_C}, f_{L_S}]$$

Fig. 18-1

High-Frequency Response of JFET Amplifiers:

The analysis of the high-frequency response of the JFET amplifier is similar to that encountered for the BJT amplifier. As shown in Fig. 18-2, there are interelectrode and wiring capacitances that will determine the high-frequency characteristics of the amplifier. The capacitors C_{gs} and C_{gd} typically vary from 1 to 10 pF, while the capacitance C_{ds} is usually quite a bit smaller, ranging from 0.1 to 1 pF.

Since the circuit of Fig. 18-2 is an inverting amplifier, a Miller effect capacitance will appear in the high-frequency ac equivalent circuit appearing in Fig. 18-3. The cutoff frequencies defined by the input and output circuits can be obtained by first finding the Thevenin equivalent circuits for each section as shown in Fig. 18-3.

Fig. 18-3

For the input circuit,

$$f_{H_i} = \frac{1}{2\pi R_{Th_i} C_i}$$

and
$$R_{Th_i} = R_{sig} \| R_G$$
.
with $C_i = C_{W_i} + C_{gs} + C_{M_i} = C_{W_i} + C_{gs} + (1 - A_v)C_{gd}$.

For the output circuit,

$$f_{H_o} = \frac{1}{2\pi R_{Th_o} C_o}$$

and
$$R_{Th_o} = R_L || R_D$$
.
with $C_o = C_{W_o} + C_{ds} + C_{M_o} = C_{W_o} + C_{ds} + (1 - 1/A_v)C_{gd}$.

The higher-cutoff frequency,

$$f_H = Min.[f_{H_i}, f_{H_o}]$$

Example 18-1:

For the JFET amplifier circuit shown in Fig. 18-4, with the following parameters:

$$I_{DSS} = 8 \text{ mA}, \quad V_P = -4 \text{ V}, \quad r_d > 10R_D, \quad C_{gd} = 2 \text{ pF}, \quad C_{gs} = 4 \text{ pF}, \quad C_{ds} = 0.5 \text{ pF}, \\ C_{W_i} = 5 \text{ pF}, \quad \text{and} \quad C_{W_o} = 6 \text{ pF}.$$

a. Determine f_L , f_H , and BW.

b. Sketch the frequency response. $V_{DD} = 20V$ $R_D = 4.7k\Omega$ C_C D $0.5\mu F$ $V_o R_L = 2.2k\Omega$ $R_{sig} = 10k\Omega$ $R_s = 1k\Omega$ $R_s = 1k\Omega$

Solution:

From dc analysis (see Fig. 18-5):

$$V_{GSQ} = -2V$$
, and $I_{DQ} = 2mA$,

$$g_m = \frac{2I_{DSS}}{|V_P|} \left(1 - \frac{V_{GSQ}}{V_P} \right) = \frac{2(8m)}{4} \left(1 - \frac{-2}{-4} \right) = 2mS$$
,

$$A_v = -g_m(R_L || R_D) = -2m(2.2k || 4.7k) = -3.$$

Fig. 18-5

$$\begin{split} f_{L_G} &= \frac{1}{2\pi (R_{sig} + R_G)C_G} = \frac{1}{2\pi (10k + 1M)(0.01\mu)} \approx 16Hz\,, \\ f_{L_C} &= \frac{1}{2\pi (R_L + R_D)C_C} = \frac{1}{2\pi (2.2k + 4.7k)(0.5\mu)} \approx 46Hz\,, \\ R_{eq} &= R_S \left\| 1/g_m = 1k \right\| 0.5k = 333.3\Omega\,, \\ f_{L_S} &= \frac{1}{2\pi R_{eq}C_S} = \frac{1}{2\pi (333.3)(2\mu)} \approx 239Hz\,, \end{split}$$

The lower-cutoff frequency, $f_L = Max.[f_{L_G}, f_{L_C}, f_{L_S}]$ = Max.[16,46,239] = 239Hz.

$$\begin{split} R_{Th_i} &= R_{sig} \left\| R_G = 10k \right\| 1M \approx 9.9k\Omega\,, \\ C_i &= C_{W_i} + C_{gs} + (1 - A_v)C_{gd} = 5p + 4p + (1 + 3)(2p) = 17pF\,, \\ f_{H_i} &= \frac{1}{2\pi R_{Th_i}C_i} = \frac{1}{2\pi (9.9k)(17p)} \approx 945.66kHz\,, \\ R_{Th_o} &= R_L \| R_D = 2.2k \| 4.7k = 1.5k\Omega\,, \\ C_o &= C_{W_o} + C_{ds} + (1 - 1/A_v)C_{gd} = 6p + 0.5p + (1 + 1/3)(2p) = 9.17pF\,, \\ f_{H_o} &= \frac{1}{2\pi R_{Th_o}C_o} = \frac{1}{2\pi (1.5k)(9.17p)} \approx 11.57MHz\,, \end{split}$$
 The higher-cutoff frequency, $f_H = Min.[f_{H_i}, f_{H_o}]$

= Min.[945.66k, 11.57M] = 945.66kHz.

The bandwidth, $BW = f_H - f_L = 945.66k - 239 \approx 945.42kHz$.

The frequency response for the low- and high-frequency regions and bandwidth are shown in Fig. 18-6.

Fig. 18-6

Exercise:

For the JFET amplifier circuit of Fig. 18-7, determine the lower- and higher-cutoff frequencies and sketch the frequency response.

