Thermodynamic Cycles for CI engines

- In early CI engines the fuel was injected when the piston reached TDC and thus combustion lasted well into the expansion stroke.
- In modern engines the fuel is injected before TDC (about 20°)

- The combustion process in the early CI engines is best approximated by a constant pressure heat addition process → Diesel Cycle
- The combustion process in the modern CI engines is best approximated by a combination of constant volume & constant pressure → **Dual Cycle**

Early CI Engine Cycle vs Diesel Cycle

Air-Standard Diesel Cycle

- Process $1 \rightarrow 2$ Isentropic compression
- Process $2 \rightarrow 3$ Constant pressure heat addition
- Process $3 \rightarrow 4$ Isentropic expansion
- Process $4 \rightarrow 1$ Constant volume heat rejection

First Law Analysis of Diesel Cycle

Equations for processes $1 \rightarrow 2, 4 \rightarrow 1$ are the same as those presented for the Otto cycle

 $2 \rightarrow 3$ Constant Pressure Heat Addition $(u_3 - u_2) = (+\frac{Q_{in}}{m}) - \frac{P_2(V_3 - V_2)}{m}$ $\frac{Q_{in}}{m} = (u_3 + P_3v_3) - (u_2 + P_2v_2)$ т $\frac{Q_{in}}{m} = (h_3 - h_2) \qquad P = \frac{RT_2}{v_2} = \frac{RT_3}{v_3} \rightarrow \left| \frac{T_3}{T_2} = \frac{v_3}{v_2} = r_c \right|$

 $3 \rightarrow 4$ Isentropic Expansion

Note that $v_4 = v_1$, so: $\frac{v_4}{v_3} = \frac{v_4}{v_2} \cdot \frac{v_2}{v_3} = \frac{v_1}{v_2} \cdot \frac{v_2}{v_3} = \frac{r}{r_c} \rightarrow \begin{bmatrix} \frac{v_4}{v_3} = \frac{r}{r_c} \\ \frac{v_4}{v_3} = \frac{r}{r_c} \end{bmatrix}$

$$\frac{P_4 v_4}{T_4} = \frac{P_3 v_3}{T_3} \longrightarrow \frac{P_4}{P_3} = \frac{T_4}{T_3} \cdot \frac{r_c}{r}$$

Thermal Efficiency

$$\eta_{Diesel} = 1 - \frac{Q_{out}/m}{Q_{in}/m} = 1 - \frac{u_4 - u_1}{h_3 - h_2}$$

For cold air-standard the above reduces to:

$$\eta_{\substack{Diesel\\const c_{v}}} = 1 - \frac{1}{r^{k-1}} \left[\frac{1}{k} \cdot \frac{\left(r_{c}^{k} - 1\right)}{\left(r_{c} - 1\right)} \right] \quad \text{recall}, \quad \eta_{Otto} = 1 - \frac{1}{r^{k-1}}$$

Note the term in the square bracket is always larger than one so for the same compression ratio, *r*, the Diesel cycle has a *lower* thermal efficiency than the Otto cycle

When $r_c (=v_3/v_2) \rightarrow 1$ the Diesel cycle efficiency approaches the efficiency of the Otto cycle

The cut-off ratio is not a natural choice for the independent variable A more suitable parameter is the heat input, the two are related by:

$$r_c = 1 - \frac{k - 1}{k} \left(\frac{Q_{in}}{P_1 V_1} \right) \frac{1}{r^{k - 1}} \qquad \text{as } Q_{in} \rightarrow 0, r_c \rightarrow 1 \text{ and } \eta \rightarrow \eta_{Otto}$$

Modern CI Engine Cycle vs Dual Cycle

Dual Cycle

Process $1 \rightarrow 2$ Isentropic compression

Process $2 \rightarrow X$ Constant volume heat addition

Process $X \rightarrow 3$ Constant pressure heat addition

Process $3 \rightarrow 4$ Isentropic expansion

Process $4 \rightarrow 1$ Constant volume heat rejection

Thermal Efficiency

where
$$r_c = \frac{v_3}{v_x}$$
 and $\alpha = \frac{p_3}{p_2}$

Note, the Otto cycle ($r_c=1$) and the Diesel cycle ($\alpha=1$) are special cases:

$$\eta_{Otto} = 1 - \frac{1}{r^{\gamma - 1}} \qquad \eta_{Diesel} = 1 - \frac{1}{r^{\gamma - 1}} \left[\frac{1}{k} \cdot \frac{(r_c^{\gamma} - 1)}{(r_c - 1)} \right]$$

Comparison between Otto, Diesel and Dual cycles

The use of the Dual cycle requires information about either:

i) the fractions of constant volume and constant pressure heat addition

(common assumption is to *equally* split the heat addition), or

- ii) maximum pressure p_3 .
- iii) Transformation of r_c and α into more natural variables yields

$$r_{c} = 1 - \frac{\gamma - 1}{\alpha k} \left[\left(\frac{Q_{in}}{p_{1} V_{1}} \right) \frac{1}{r^{\gamma - 1}} - \frac{\alpha - 1}{\gamma - 1} \right] \qquad \alpha = \frac{1}{r^{\gamma}} \frac{p_{3}}{p_{1}}$$

For the same inlet conditions p_1 , V_1 and the same compression ratio:

$$\eta_{Otto} > \eta_{Dual} > \eta_{Diesel}$$

For the same inlet conditions p_1 , v_1 and the same peak pressure p_3 (actual design limitation in engines):

$$\eta_{Diesel} > \eta_{Dual} > \eta_{otto}$$

For the same compression ratio p_2/p_1 :

For the *same peak pressure p*₃:

Type of Fuel Vs Combustion Strategy

- Highly volatile with High self Ignition Temperature: Spark Ignition. Ignition after thorough mixing of air and fuel.
- Less Volatile with low self Ignition Temperature: Compression Ignition , Almost simultaneous mixing & Ignition.