
Thermodynamic Cycles for CI engines
• In early CI engines the fuel was injected when the piston reached
TDC and thus combustion lasted well into the expansion stroke.

• In modern engines the fuel is injected before TDC (about 20o)
Fuel injection starts Fuel injection starts

Early CI engine Modern CI engine

• The combustion process in the early CI engines is best approximated
by a constant pressure heat addition process  Diesel Cycle

• The combustion process in the modern CI engines is best approximated
by a combination of constant volume & constant pressure  Dual Cycle



Early CI Engine Cycle vs Diesel Cycle
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Process 1 2   Isentropic compression
Process 2  3  Constant pressure heat addition
Process 3  4  Isentropic expansion
Process 4  1  Constant volume heat rejection

Air-Standard Diesel Cycle
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First Law Analysis of Diesel Cycle
Equations for processes 12, 41 are the
same as those presented for the Otto cycle
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Note that  v4=v1 , so:  
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For cold air-standard the above reduces to:

Thermal Efficiency
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Note the term in the square bracket is always larger than one so
for the same compression ratio, r,  the Diesel cycle has a lower
thermal efficiency than the Otto cycle
When rc (=v3/v2)1 the Diesel cycle efficiency approaches the 
efficiency of the Otto cycle



Modern CI Engines
12 < r < 23 

Thermal Efficiency 

The cut-off ratio is not a natural choice for the independent variable
A more suitable parameter is the heat input, the two are related by:
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Modern CI Engine Cycle vs Dual Cycle
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Process 1  2  Isentropic compression
Process 2  X  Constant volume heat addition
Process X  3  Constant pressure heat addition
Process 3  4  Isentropic expansion
Process 4  1  Constant volume heat rejection

Dual Cycle
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For cold air-standard the 
above reduces to:
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Note, the Otto cycle (rc=1) and the Diesel cycle (=1) are special cases:
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The use of the Dual cycle requires information about either:
i) the fractions of constant volume and constant pressure heat 

addition 
(common assumption is to equally split the heat addition), or

ii) maximum pressure p3. iii) Transformation of rc and  into more natural variables yields
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Comparison between Otto, Diesel and Dual cycles
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For the same inlet conditions p1, V1 and the same compression ratio:

DieselDualOtto  
For the same inlet conditions p1, v1 and the same peak pressure p3(actual design limitation in engines):

ottoDualDiesel  



For the same compression ratio p2/p1: For the same peak pressure p3:




1
1

Tds
Q
Q

in
outth

“x” →“2.5”

Pmax

Po

Po

Pre
ssu

re,
 P

Pre
ssu

re,
 P

Specific Volume


 32

141     Tds
Tds

Tmax

Te
mp

era
tur

e, T

Te
mp

era
tur

e, T

Specific Volume

Entropy Entropy



Type of Fuel Vs Combustion Strategy
• Highly volatile with High self Ignition Temperature: Spark 

Ignition. Ignition after thorough mixing of air and fuel.
• Less Volatile with low self Ignition Temperature: 

Compression Ignition , Almost simultaneous mixing & 
Ignition.Ignition.


