Frequency Response of BJT Amplifiers

Low-Frequency Response of BJT Amplifiers:

For the *high-pass filter* circuit of Fig. 14-1a, the output and the input voltages are related by the voltage-divider rule in the following manner:

$$V_o = \frac{RV_i}{R + X_C},$$

with the magnitude of V_o determined by

$$\left|V_{o}\right| = \frac{R \cdot \left|V_{i}\right|}{\sqrt{R^{2} + X_{C}^{2}}}.$$

For special case where $X_C = R$,

$$|V_o| = \frac{1}{\sqrt{2}} |V_i|$$
, and
 $|A_v| = \frac{|V_o|}{|V_i|} = \frac{1}{\sqrt{2}} = 0.707|_{X_C = R}$

In "*deciBel*" (dB):

Fig. 14-1

At the frequency of witch $X_C = R$, the output will be 70.7 % of the input (a 3 dB drop in gain, see Fig. 14-1b) for the *RC* circuit. The frequency (f_L) at witch this occurs is determined from:

$$X_{C} = \frac{1}{\omega C} = \frac{1}{2\pi fC} = R \implies$$

$$f_{L} = \frac{1}{2\pi RC} \qquad f_{L}: \text{ the low-cutoff frequency.}$$

The Capacitors C_S , C_C , and C_E will determine the lower-cutoff frequency (f_L) of the loaded voltage divider BJT bias configuration shown in Fig. 14-2, but the results can be applied to any BJT configuration.

For the amplifier circuit of Fig. 14-2:

The cutoff-frequency of C_{S} ,

f_{L_S}	_	1
	_	$\overline{2\pi(R_S+R_i)C_S}$

where $R_i = R' || h_{ie}$, and $R' = R_1 || R_2$.

The cutoff-frequency of C_C ,

f _	1
J_{L_C} –	$\overline{2\pi(R_L+R_o)C_C}$

 $2\pi(\kappa_L + \kappa_o)C_C$

where $R_o = R_C ||1/h_{oe}|$.

The cutoff-frequency of C_E ,

$$f_{L_E} = \frac{1}{2\pi R_e C_E}$$

where $R_e = R_E \| \frac{R'_S + h_{ie}}{h_{fe} + 1}$, and $R'_S = R_S \| R'$.

The lower-cutoff frequency,

 $f_L = Max.[f_{L_S}, f_{L_C}, f_{L_E}]$

Fig. 14-2

Miller's Theorem and Its Dual:

For the circuit of Fig. 14-3a,

$$I_{i} = \frac{V_{i}}{Z_{i}}, \quad I_{1} = \frac{V_{i}}{R_{i}}, \text{ and } I_{2} = \frac{V_{i} - V_{o}}{Z_{F}} = \frac{V_{i} - A_{v}V_{i}}{Z_{F}} = \frac{(1 - A_{v})V_{i}}{Z_{F}} = \frac{V_{i}}{Z_{F}/(1 - A_{v})}.$$

$$I_{i} = I_{1} + I_{2} \implies \frac{V_{i}}{Z_{i}} = \frac{V_{i}}{R_{i}} + \frac{Vi}{Z_{F}/(1 - A_{v})} \implies \frac{1}{Z_{i}} = \frac{1}{R_{i}} + \frac{1}{Z_{F}/(1 - A_{v})}.$$
when $Z_{F} = R_{F} \implies \frac{1}{Z_{i}} = \frac{1}{R_{i}} + \frac{1}{R_{M_{i}}}, \text{ where } R_{M_{i}} = \frac{R_{F}}{1 - A_{v}}.$
As shown in Fig. 14-3b,

when
$$Z_F = X_{C_F} \implies \frac{1}{Z_i} = \frac{1}{R_i} + \frac{1}{X_{C_{M_i}}}$$
, where $X_{C_{M_i}} = \frac{X_{C_F}}{1 - A_v} = \frac{1}{\omega(1 - A_v)C_F} \implies C_{M_i} = (1 - A_v)C_F$

Fig. 14-3

In a similar way,

$$\frac{1}{Z_o} = \frac{1}{R_o} + \frac{1}{Z_F / (1 - 1/A_v)} \implies R_{M_o} = \frac{R_F}{1 - 1/A_v}, \text{ and}$$

$$X_{C_{M_o}} = \frac{X_{C_F}}{1 - 1/A_v} = \frac{1}{\omega(1 - 1/A_v)C_F} \implies$$

$$\frac{1}{C_{M_o} = (1 - 1/A_v)C_F}$$

The above shows us that:

For any <u>inverting</u> amplifier (phase shift of 180° between input and output resulting in a negative value for A_{ν}), the input and output capacitance will be increased by a Miller effect capacitance sensitive to the gain of the amplifier and the interelectrode capacitance connected between the input and output terminals of the active device.

High-Frequency Response of BJT Amplifiers:

A frequency response of the *low-pass filter* circuit of Fig. 14-4a is given by Fig. 14-4b, where the high-cutoff frequency is determined from:

At the high-frequency end, there are two factors that will define the -3 dB point: the circuit capacitance (parasitic and introduced) and the frequency dependence of h_{fe} .

Circuit (Capacitances) Parameters:

In high-frequency region the capacitive elements of the importance are the inter-electrode (between terminals) capacitances internal to the active device and the wiring capacitance between leads of the circuit. In Fig. 14-5, the various parasitic capacitances (C_{be} , C_{bc} , and C_{ce}) of the transistor have been included with the wiring capacitances (C_{W_i} and C_{W_o}) introduced during construction.

The high-frequency equivalent model for the amplifier circuit of Fig. 14-5 appears in Fig. 14-6. Note the absence of the capacitors C_S , C_C , and C_E , which are all assumed to be in the short circuit state at these frequencies.

Fig. 14-6

For the circuit of Fig. 14-6:

The input high cutoff frequency,

$$f_{H_i} = \frac{1}{2\pi R_{Th_i}C_i}$$

where $R_{Th_i} = R_S ||R_i|$, and $R_i = R_1 ||R_2||h_{ie}|$. $C_i = C_{W_i} + C_{be} + C_{M_i} = C_{W_i} + C_{be} + (1 - A_v)C_{bc}$.

The output high cutoff frequency,

$$f_{H_o} = \frac{1}{2\pi R_{Th_o}C_o}$$

where
$$R_{Th_o} = R_L ||R_o|$$
, and $R_o = R_C ||1/h_{oe}|$
 $C_o = C_{W_o} + C_{ce} + C_{M_o} = C_{W_o} + C_{ce} + (1 - 1/A_v)C_{bc}$.

The higher-cutoff frequency,

$$f_H = Min.[f_{H_i}, f_{H_o}]$$

h_{fe} (β) Variation:

The beta cutoff frequency (f_{β}) is another important transistor cutoff frequency. The f_{β} , the frequency where the β of the transistor drop to 0.707 of its low-frequency value, is given by

$$f_{\beta} \cong \frac{1}{2\pi\beta r_e(C_{be} + C_{bc})}$$

If the frequency of operation is increased above the f_{β} of the transistor, the β will continue to decrease. Eventually, we find a frequency where the $\beta = 1$; this frequency is called the f_T of the transistor. The f_T of a transistor is much higher than the f_{β} . The relation between these two frequencies is

$$f_T \cong \beta \cdot f_\beta \approx h_{fe} \cdot BW$$
 f_T : the gain-bandwidth product frequency.

Finally, in data sheet, the CB high-frequency parameters rather than CE parameters are often specified for a transistor. The following equation permits a direct conversion for determining f_{β} if f_{α} and α are specified.

$$f_{\beta} = f_{\alpha}(1-\alpha)$$

Example 14-1:

For the BJT amplifier circuit shown in Fig. 14-7, with the following parameters: $C_{be} = 36 \text{ pF}$, $C_{bc} = 4 \text{ pF}$, $C_{ce} = 1 \text{ pF}$, $C_{W_i} = 6 \text{ pF}$, $C_{W_o} = 8 \text{ pF}$, and $r_o = 1/h_{oe} = \infty \Omega$.

- 1. Determine f_L , f_H , BW, f_β , and f_T .
- 2. Sketch the frequency response.

Solution:

Testing:
$$\beta R_E \ge 10R_2$$
, $100(2k) \ge 10(10k)$, $200k\Omega > 100k\Omega$ Satisfied.
 $V_B = \frac{V_{CC} \cdot R_2}{R_1 + R_2} = \frac{20(10k)}{40k + 10k} = 4V$, $I_E = \frac{V_E}{R_E} = \frac{V_B - V_{EB}}{R_E} = \frac{4 - 0.7}{2k} = 1.65mA$.
 $r_e = \frac{26mV}{I_E} = \frac{26m}{1.65m} = 15.76\Omega$, $h_{ie} = \beta r_e = 100(15.76) = 1.58k\Omega$.
 $A_{v_{mid}} = -\frac{R_L ||R_C}{r_e} = -\frac{2.2k ||4k}{15.76} = -90$.
 $R_i = R_1 ||R_2||h_{ie} = 40k ||10k||1.58k = 1.32k\Omega$,
 $f_{L_S} = \frac{1}{2\pi(R_S + R_i)C_S} = \frac{1}{2\pi(1k + 1.32k)(10\mu)} = 7Hz$.
 $R_o = R_C ||1/h_{oe} = 4k\Omega$,
 $f_{L_C} = \frac{1}{2\pi(R_L + R_o)C_C} = \frac{1}{2\pi(2.2k + 4k)(1\mu)} = 26Hz$.
 $R'_S = R_S ||R_1||R_2 = 1k ||40k||10k = 0.89k\Omega$,
 $R_e = R_E ||[\frac{R'_S}{\beta} + r_e]] = 2k ||[\frac{0.89k}{100} + 15.76]] = 24.35\Omega$.
 $f_{L_E} = \frac{1}{2\pi R_e C_E} = \frac{1}{2\pi(24.35)(20\mu)} = 327Hz$.
The lower-cutoff frequency, $f_L = Max.[f_{L_S}, f_{L_C}, f_{L_E}]$
 $= Max.[7,26,327]] = 327Hz$.

$$\begin{split} R_{Th_i} &= R_S \big\| R_i = 1k \big\| 1.32k = 0.57k\Omega \,. \\ C_i &= C_{W_i} + C_{be} + C_{M_i} = C_{W_i} + C_{be} + (1 - A_v)C_{bc} = 6p + 36p + (1 + 90)(4p) = 406pF \,. \\ f_{H_i} &= \frac{1}{2\pi R_{Th_i}C_i} = \frac{1}{2\pi (0.57k)(406p)} = 687.732kHz \,. \\ R_{Th_o} &= R_L \big\| R_o = 2.2k \big\| 4k = 1.42k\Omega \,. \\ C_o &= C_{W_o} + C_{ce} + C_{M_o} = C_{W_o} + C_{ce} + (1 - 1/A_v)C_{bc} = 8p + 1p + (1 + 1/90)(4p) = 13pF \,. \\ f_{H_o} &= \frac{1}{2\pi R_{Th_o}C_o} = \frac{1}{2\pi (1.42k)(13p)} = 8.622MHz \,. \\ \end{split}$$

The higher-cutoff frequency, $f_H = Min.[f_{H_i}, f_{H_o}] = Min.[687.732kRz] = 687.732kHz \,. \end{split}$

The bandwidth, $BW = f_H - f_L = 687.732k - 327 = 687.405kHz$.

The beta cutoff frequency, $f_{\beta} = \frac{1}{2\pi\beta r_e(C_{be} + C_{bc})}$ $= \frac{2\pi\beta r_e (C_{be} + C_{bc})}{2\pi(100)(15.76)(36\,p + 4\,p)} = 2.52MHz \,.$

The gain-bandwidth product, $f_T = \beta \cdot f_\beta = 100(2.52M) = 252MHz$.

The frequency response for the low- and high-frequency regions, bandwidth, beta cutoff frequency, and gain-bandwidth product frequency are shown in Fig. 14-8.

Exercise:

For the BJT amplifier circuit of Fig. 14-9, determine the lower- and higher-cutoff frequencies.

Fig. 14-9