Frequency Response of BJT Amplifiers

Low-Frequency Response of BJT Amplifiers:

For the high-pass filter circuit of Fig. 14-1a, the output and the input voltages are related by the voltage-divider rule in the following manner:

$$
V_{o}=\frac{R V_{i}}{R+X_{C}},
$$

with the magnitude of V_{o} determined by

$$
\left|V_{o}\right|=\frac{R \cdot\left|V_{i}\right|}{\sqrt{R^{2}+X_{C}^{2}}}
$$

For special case where $X_{C}=R$,

$$
\begin{aligned}
& \left|V_{o}\right|=\frac{1}{\sqrt{2}}\left|V_{i}\right|, \text { and } \\
& \left|A_{v}\right|=\frac{\left|V_{o}\right|}{\left|V_{i}\right|}=\frac{1}{\sqrt{2}}=\left.0.707\right|_{X_{C}=R} .
\end{aligned}
$$

In "deciBel" (dB):

$$
G(d B)=20 \log _{10}\left|A_{v}\right|=20 \log _{10} \frac{1}{\sqrt{2}}=-3 d B .
$$

(a)

(b)

Fig. 14-1
At the frequency of witch $X_{C}=R$, the output will be 70.7% of the input (a 3 dB drop in gain, see Fig. 14-1b) for the $R C$ circuit. The frequency $\left(f_{L}\right)$ at witch this occurs is determined from:

$$
X_{C}=\frac{1}{\omega C}=\frac{1}{2 \pi f C}=R \Rightarrow
$$

$$
f_{L}=\frac{1}{2 \pi R C}
$$

f_{L} : the low-cutoff frequency.

The Capacitors C_{S}, C_{C}, and C_{E} will determine the lower-cutoff frequency $\left(f_{L}\right)$ of the loaded voltage divider BJT bias configuration shown in Fig. 14-2, but the results can be applied to any BJT configuration.

For the amplifier circuit of Fig. 14-2:
The cutoff-frequency of C_{S},

$$
f_{L_{S}}=\frac{1}{2 \pi\left(R_{S}+R_{i}\right) C_{S}}
$$

where $R_{i}=R^{\prime} \| h_{i e}$, and

$$
R^{\prime}=R_{1} \| R_{2}
$$

The cutoff-frequency of C_{C},

$$
f_{L_{C}}=\frac{1}{2 \pi\left(R_{L}+R_{o}\right) C_{C}}
$$

Fig. 14-2
where $R_{o}=R_{C} \| 1 / h_{o e}$.
The cutoff-frequency of C_{E},

$$
f_{L_{E}}=\frac{1}{2 \pi R_{e} C_{E}}
$$

where $R_{e}=R_{E} \| \frac{R_{S}^{\prime}+h_{i e}}{h_{f e}+1}$, and

$$
R_{S}^{\prime}=R_{S} \| R^{\prime}
$$

The lower-cutoff frequency,

$$
f_{L}=\operatorname{Max} .\left[f_{L_{S}}, f_{L_{C}}, f_{L_{E}}\right]
$$

Miller's Theorem and Its Dual:

For the circuit of Fig. 14-3a,

$$
\begin{aligned}
& I_{i}=\frac{V_{i}}{Z_{i}}, I_{1}=\frac{V_{i}}{R_{i}}, \text { and } I_{2}=\frac{V_{i}-V_{o}}{Z_{F}}=\frac{V_{i}-A_{v} V_{i}}{Z_{F}}=\frac{\left(1-A_{v}\right) V_{i}}{Z_{F}}=\frac{V_{i}}{Z_{F} /\left(1-A_{v}\right)} . \\
& I_{i}=I_{1}+I_{2} \Rightarrow \frac{V_{i}}{Z_{i}}=\frac{V_{i}}{R_{i}}+\frac{V i}{Z_{F} /\left(1-A_{v}\right)} \Rightarrow \frac{1}{Z_{i}}=\frac{1}{R_{i}}+\frac{1}{Z_{F} /\left(1-A_{v}\right)} .
\end{aligned}
$$

when $Z_{F}=R_{F} \Rightarrow>\frac{1}{Z_{i}}=\frac{1}{R_{i}}+\frac{1}{R_{M_{i}}}$, where $R_{M_{i}}=\frac{R_{F}}{1-A_{v}}$.
As shown in Fig. 14-3b,
when $Z_{F}=X_{C_{F}}=>\frac{1}{Z_{i}}=\frac{1}{R_{i}}+\frac{1}{X_{C_{M_{i}}}}$, where $X_{C_{M_{i}}}=\frac{X_{C_{F}}}{1-A_{v}}=\frac{1}{\omega\left(1-A_{v}\right) C_{F}}=>$

$$
C_{M_{i}}=\left(1-A_{v}\right) C_{F}
$$

Fig. 14-3
In a similar way,

$$
\begin{aligned}
& \frac{1}{Z_{o}}=\frac{1}{R_{o}}+\frac{1}{Z_{F} /\left(1-1 / A_{v}\right)}=>R_{M_{o}}=\frac{R_{F}}{1-1 / A_{v}}, \text { and } \\
& X_{C_{M_{o}}}=\frac{X_{C_{F}}}{1-1 / A_{v}}=\frac{1}{\omega\left(1-1 / A_{v}\right) C_{F}} \Rightarrow \\
& C_{M_{o}}=\left(1-1 / A_{v}\right) C_{F}
\end{aligned}
$$

The above shows us that:
For any inverting amplifier (phase shift of 180° between input and output resulting in a negative value for A_{v}), the input and output capacitance will be increased by a Miller effect capacitance sensitive to the gain of the amplifier and the interelectrode capacitance connected between the input and output terminals of the active device.

High-Frequency Response of BJT Amplifiers:

A frequency response of the low-pass filter circuit of Fig. 14-4a is given by Fig. 14-4b, where the high-cutoff frequency is determined from:

Fig. 14-4
At the high-frequency end, there are two factors that will define the -3 dB point: the circuit capacitance (parasitic and introduced) and the frequency dependence of $h_{f e}$.

Circuit (Capacitances) Parameters:

In high-frequency region the capacitive elements of the importance are the inter-electrode (between terminals) capacitances internal to the active device and the wiring capacitance between leads of the circuit. In Fig. 14-5, the various parasitic capacitances ($C_{b e}, C_{b c}$, and $C_{c e}$) of the transistor have been included with the wiring capacitances ($C_{W_{i}}$ and $C_{W_{o}}$) introduced during construction.

Fig. 14-5

The high-frequency equivalent model for the amplifier circuit of Fig. 14-5 appears in Fig. 14-6. Note the absence of the capacitors C_{S}, C_{C}, and C_{E}, which are all assumed to be in the short circuit state at these frequencies.

Fig. 14-6
For the circuit of Fig. 14-6:
The input high cutoff frequency,

$$
f_{H_{i}}=\frac{1}{2 \pi R_{T h_{i}} C_{i}}
$$

where $R_{T h_{i}}=R_{S} \| R_{i}$, and $R_{i}=R_{1}\left\|R_{2}\right\| h_{i e}$.

$$
C_{i}=C_{W_{i}}+C_{b e}+C_{M_{i}}=C_{W_{i}}+C_{b e}+\left(1-A_{v}\right) C_{b c} .
$$

The output high cutoff frequency,

$$
f_{H_{o}}=\frac{1}{2 \pi R_{T h_{o}} C_{o}}
$$

where $R_{T h_{o}}=R_{L} \| R_{o}$, and $R_{o}=R_{C} \| 1 / h_{o e}$

$$
C_{o}=C_{W_{o}}+C_{c e}+C_{M_{o}}=C_{W_{o}}+C_{c e}+\left(1-1 / A_{v}\right) C_{b c} .
$$

The higher-cutoff frequency,

$$
f_{H}=\text { Min. }\left[f_{H_{i}}, f_{H_{o}}\right]
$$

$h_{\text {te }}[\mathrm{\beta}]$ Variation:

The beta cutoff frequency $\left(f_{\beta}\right)$ is another important transistor cutoff frequency. The f_{β}, the frequency where the β of the transistor drop to 0.707 of its low-frequency value, is given by

$$
f_{\beta} \cong \frac{1}{2 \pi \beta r_{e}\left(C_{b e}+C_{b c}\right)}
$$

If the frequency of operation is increased above the f_{β} of the transistor, the β will continue to decrease. Eventually, we find a frequency where the $\beta=1$; this frequency is called the f_{T} of the transistor. The f_{T} of a transistor is much higher than the f_{β}. The relation between these two frequencies is

$$
f_{T} \cong \beta \cdot f_{\beta} \approx h_{f e} \cdot B W \quad \boldsymbol{f}_{T} \text { : the gain-bandwidth product frequency. }
$$

Finally, in data sheet, the CB high-frequency parameters rather than CE parameters are often specified for a transistor. The following equation permits a direct conversion for determining f_{β} if f_{α} and α are specified.

$$
f_{\beta}=f_{\alpha}(1-\alpha)
$$

Example 14-1:

For the BJT amplifier circuit shown in Fig. 14-7, with the following parameters:
$C_{b e}=36 \mathrm{pF}, C_{b c}=4 \mathrm{pF}, C_{c e}=1 \mathrm{pF}, C_{W_{i}}=6 \mathrm{pF}, C_{W_{o}}=8 \mathrm{pF}$, and $r_{o}=1 / h_{o e}=\infty \Omega$.

1. Determine $f_{L}, f_{H}, B W$, f_{β}, and f_{T}.
2. Sketch the frequency response.

Fig. 14-7

Solution:

Testing: $\beta R_{E} \geq 10 R_{2}, 100(2 k) \geq 10(10 k), 200 k \Omega>100 k \Omega$ Satisfied.
$V_{B}=\frac{V_{C C} \cdot R_{2}}{R_{1}+R_{2}}=\frac{20(10 k)}{40 k+10 k}=4 V, I_{E}=\frac{V_{E}}{R_{E}}=\frac{V_{B}-V_{E B}}{R_{E}}=\frac{4-0.7}{2 k}=1.65 \mathrm{~mA}$.
$r_{e}=\frac{26 m V}{I_{E}}=\frac{26 m}{1.65 m}=15.76 \Omega, \quad h_{i e}=\beta r_{e}=100(15.76)=1.58 \mathrm{k} \Omega$.
$A_{v_{\text {mid }}}=-\frac{R_{L} \| R_{C}}{r_{e}}=-\frac{2.2 k \| 4 k}{15.76}=-90$.
$R_{i}=R_{1}\left\|R_{2}\right\| h_{i e}=40 k\|10 k\| 1.58 k=1.32 k \Omega$,
$f_{L_{S}}=\frac{1}{2 \pi\left(R_{S}+R_{i}\right) C_{S}}=\frac{1}{2 \pi(1 k+1.32 k)(10 \mu)}=7 \mathrm{~Hz}$.
$R_{o}=R_{C} \| 1 / h_{o e}=4 k \Omega$,
$f_{L_{C}}=\frac{1}{2 \pi\left(R_{L}+R_{o}\right) C_{C}}=\frac{1}{2 \pi(2.2 k+4 k)(1 \mu)}=26 \mathrm{~Hz}$.
$R_{S}^{\prime}=R_{S}\left\|R_{1}\right\| R_{2}=1 k\|40 k\| 10 k=0.89 k \Omega$,
$R_{e}=R_{E}\left\|\left[\frac{R_{S}^{\prime}}{\beta}+r_{e}\right]=2 k\right\|\left[\frac{0.89 k}{100}+15.76\right]=24.35 \Omega$.
$f_{L_{E}}=\frac{1}{2 \pi R_{e} C_{E}}=\frac{1}{2 \pi(24.35)(20 \mu)}=327 \mathrm{~Hz}$.
The lower-cutoff frequency, $f_{L}=\operatorname{Max} .\left[f_{L_{S}}, f_{L_{C}}, f_{L_{E}}\right]$

$$
=\operatorname{Max} \cdot[7,26,327]=327 \mathrm{~Hz}
$$

$R_{T h_{i}}=R_{S}\left\|R_{i}=1 k\right\| 1.32 k=0.57 \mathrm{k} \Omega$.
$C_{i}=C_{W_{i}}+C_{b e}+C_{M_{i}}=C_{W_{i}}+C_{b e}+\left(1-A_{v}\right) C_{b c}=6 p+36 p+(1+90)(4 p)=406 p F$.
$f_{H_{i}}=\frac{1}{2 \pi R_{T h_{i}} C_{i}}=\frac{1}{2 \pi(0.57 \mathrm{k})(406 \mathrm{p})}=687.732 \mathrm{kHz}$.
$R_{T h_{o}}=R_{L}\left\|R_{o}=2.2 k\right\| 4 k=1.42 k \Omega$.
$C_{o}=C_{W_{o}}+C_{c e}+C_{M_{o}}=C_{W_{o}}+C_{c e}+\left(1-1 / A_{v}\right) C_{b c}=8 p+1 p+(1+1 / 90)(4 p)=13 p F$.
$f_{H_{o}}=\frac{1}{2 \pi R_{T h_{o}} C_{o}}=\frac{1}{2 \pi(1.42 k)(13 p)}=8.622 \mathrm{MHz}$.
The higher-cutoff frequency, $f_{H}=\operatorname{Min} .\left[f_{H_{i}}, f_{H_{o}}\right]$

$$
=\operatorname{Min} \cdot[687.732 k, 8.622 \mathrm{M}]=687.732 \mathrm{kHz}
$$

The bandwidth, $B W=f_{H}-f_{L}=687.732 k-327=687.405 \mathrm{kHz}$.

The beta cutoff frequency, $f_{\beta}=\frac{1}{2 \pi \beta r_{e}\left(C_{b e}+C_{b c}\right)}$

$$
=\frac{1}{2 \pi(100)(15.76)(36 p+4 p)}=2.52 \mathrm{MHz} .
$$

The gain-bandwidth product, $f_{T}=\beta \cdot f_{\beta}=100(2.52 \mathrm{M})=252 \mathrm{MHz}$.
The frequency response for the low- and high-frequency regions, bandwidth, beta cutoff frequency, and gain-bandwidth product frequency are shown in Fig. 14-8.

Fig. 14-8

Exercise:

For the BJT amplifier circuit of Fig. 14-9, determine the lower- and higher-cutoff frequencies.

Fig. 14-9

