

Figure 12 Diffusion of A through stagnant, nondiffusing B: (a) benzene evaporating into air, (b) ammonia in air being absorbed into water.

One example, shown in Fig. 12(a), is in the evaporation of pure liquid such as benzene (A) at the bottom of a narrow tube, where a large amount of inert or nondiffusing air (B) is passed over the top.
$>$ The benzene vapor (A) diffuses through the air (B) in the tube. The boundary at the liquid surface at point 1 is impermeable to air, since air is insoluble in benzene liquid.
$>$ Hence, air (B) cannot diffuse into or away from the surface. At point 2 the partial pressure $P_{A 2}=0$, since a large volume of air is passing by.
> Another example, shown in Fig. 12(b), occurs in the absorption of $\mathrm{NH}_{3}(A)$ vapor which is in air (B) by water.
> The water surface is impermeable to the air, since air is only very slightly soluble in water. Thus, since B cannot diffuse, $\boldsymbol{N}_{B}=0$.
> To derive the case for A diffusing in stagnant, nondiffusing $B, N_{B}=0$ is substituted into the general equation (24)

$$
\begin{equation*}
N_{\mathrm{A}}=-c D_{A B} \frac{\mathrm{~d} x_{A}}{\mathrm{~d} z}+\frac{c_{A}}{c}\left(N_{A}+0\right) \tag{38}
\end{equation*}
$$

$>$ The convective flux of A is $\left(c_{A} / c\right)\left(N_{A}+0\right)$. Keeping the total pressure P constant, substituting $c=P / R T, p_{A}=$ $x_{A} P$, and $c_{A} / c=p_{A} / P$ into the above equation

$$
\begin{equation*}
N_{A}=-\frac{D_{A B}}{R T} \frac{d p_{A}}{d z}+\frac{p_{A}}{P} N_{A} \tag{39}
\end{equation*}
$$

> Rearranging and integrating,

$$
\begin{align*}
& N_{A}\left(1-\frac{p_{A}}{P}\right)=-\frac{D_{A B}}{R T} \frac{d p_{A}}{d z} \tag{40}\\
& N_{A} \int_{z_{l}}^{z_{2}} d z=-\frac{D_{A B}}{R T} \int_{p_{A l}}^{p_{A 2}} \frac{d p_{A}}{\left(1-p_{A} / P\right)} \tag{41}\\
& N_{A}=\frac{D_{A B} P}{R T\left(z_{2}-z_{l}\right)} \ln \left(\frac{P-p_{A 2}}{P-p_{A l}}\right) \tag{42}
\end{align*}
$$

> The above equation is the final equation to be used to calculate the flux of A.
$>$ However, it is often written in another form.
$>A$ log mean value of the inert B is defined as follows.
$>$ Since $P=p_{A 1}+p_{B 1}=p_{A 2}+p_{B 2}, p_{B 1}=P-p_{A 1}$ and $p_{B 2}=P-p_{A 2}$

$$
\begin{equation*}
P_{B M}=\frac{p_{B 2}-p_{B 1}}{\ln \left(p_{B 2} / p_{B 1}\right)}=\frac{p_{A 1}-p_{A 2}}{\ln \left[\left(P-p_{A 2}\right) /\left(P-p_{A 1}\right)\right]} \tag{43}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
N_{A}=\frac{D_{A B} P}{R T\left(Z_{2}-Z_{1}\right) p_{B M}}\left(p_{A 1}-p_{A 2}\right) \tag{44}
\end{equation*}
$$

Compare with the earlier equation for equimolar counterdiffusion:

$$
J_{A}=\frac{D_{A B}\left(p_{A l}-p_{A 2}\right)}{R T\left(z_{2}-z_{1}\right)}
$$

Therefore, in the present case, $P / p_{B M}$ can be regarded as correction factor.

In addition, for gases, Eq. (20) $N_{A}=J_{A}+c_{A} v_{M}$ can also be expressed using mole fraction in vapor phase (y_{A}), since:

$$
\begin{gather*}
\mathrm{c}_{\mathrm{A}}=\rho_{\mathrm{M}} \mathrm{y}_{\mathrm{A}} \tag{45}\\
v_{\mathrm{M}}=\frac{N}{\rho_{\mathrm{M}}} \tag{46}
\end{gather*}
$$

where:
$\rho_{M}=$ molar density (kgmole/m ${ }^{3}$)
$=1 / 22.41 \mathrm{kgmole} / \mathrm{m}^{3}$ (at standard conditions, $0^{\circ} \mathrm{C}$ \& 1 atm)
$y_{A}=$ mole fraction of component A in vapor phase
N = total convective flux of the whole stream relative to the stationary point (kgmole/m ${ }^{2}$.s)
$v_{M}=$ molar average velocity $\left(\mathrm{ms}^{-1}\right)$
$c_{A}=$ molar concentration of component $A\left(\mathrm{kgmole} / \mathrm{m}^{3}\right)$

Thus the Eq. (20) becomes:

$$
\begin{equation*}
N_{A}=y_{A} N-D_{A B} \rho_{M} \frac{d y_{A}}{d z} \tag{47}
\end{equation*}
$$

Since $N=N_{A}+N_{B}$, and when only component A is being transferred (i.e.: $N_{B}=0$), the total flux to or away from the interface \boldsymbol{N} is the same as \boldsymbol{N}_{A}, then the Eq. becomes:

$$
\begin{equation*}
N_{A}=y_{A} N_{A}-D_{A B} \rho_{M} \frac{d y_{A}}{d z} \tag{48}
\end{equation*}
$$

Rearranging and integrating:

$$
\begin{gather*}
N_{A}\left(1-y_{A}\right)=-D_{A B} \rho_{M} \frac{d y_{A}}{d z} \\
N_{A} \int_{\mathrm{z}_{1}}^{z_{2}} d z=-D_{A B} \rho_{M} \int_{y_{A 1}}^{y_{A 2}} \frac{d y_{A}}{\left(1-y_{A}\right)} \tag{50}\\
\mathrm{N}_{\mathrm{A}}=\frac{\mathrm{D}_{\mathrm{AB}} \rho_{\mathrm{M}}}{\mathrm{z}_{2}-\mathrm{z}_{1}} \ln \left(\frac{1-\mathrm{y}_{\mathrm{A} 2}}{1-\mathrm{y}_{\mathrm{A} 1}}\right) \tag{51}
\end{gather*}
$$

Similarly,

$$
\begin{aligned}
& y_{B 1}=1-y_{A 1} \\
& y_{B 2}=1-y_{A 2} \\
& y_{B 2}-y_{B 1}=y_{A 1}-y_{A 2} \text { and }\left(y_{A 1}-y_{A 2}\right) /\left(y_{B 2}-y_{B 1}\right)=1
\end{aligned}
$$

Then,

$$
\begin{equation*}
N_{A}=\frac{D_{A B} \rho_{M}}{z_{2}-z_{1}} \cdot \frac{y_{A I}-y_{A 2}}{y_{B 2}-y_{B 1}} \ln \left(\frac{y_{B 2}}{y_{B 1}}\right) \tag{52}
\end{equation*}
$$

The logarithmic mean of $y_{B 1}$ and $y_{B 2}$ is given by:

$$
\begin{equation*}
y_{B M}=\frac{y_{B 2}-y_{B I}}{\ln \left(y_{B 2} y_{B I}\right)} \tag{53}
\end{equation*}
$$

Finally, by substituting Eq. (53) into Eq. (52) gives:

$$
\begin{equation*}
N_{A}=\frac{D_{A B} \rho_{M}}{\left(z_{2}-z_{1}\right) y_{B M}}\left(y_{A 1}-y_{A 2}\right) \tag{54}
\end{equation*}
$$

Example:
Water in the bottom of a narrow metal tube is held at a constant temperature of 293 K . The total pressure of air (assume dry) is $1.01325 \times 10^{5} \mathrm{~Pa}(1.0 \mathrm{~atm})$ and the temperature is $293 \mathrm{~K}\left(20^{\circ} \mathrm{C}\right)$. Water evaporates and diffuses through the air in the tube and the diffusion path $z_{2}-z_{1}$ is $0.1524 \mathrm{~m}(0.5 \mathrm{ft})$ long. The diagram is similar to the shown figure. Calculate the rate of evaporation at steady state in $\mathrm{lb} \mathrm{mol} / \mathrm{ft}^{2} \cdot \mathrm{~h}$ and $\mathrm{kgmole} / \mathrm{m}^{2}$.s. The diffusivity of water vapor at 293 K and 1 atm pressure is $0.250 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$. Assume that the system is isothermal. Use SI and English units.

Solutions

$>$ The diffusivity is converted to $\mathrm{ft}^{2} / \mathrm{h}$ by using the conversion factor (refer Appendix 1, McCabe, Smith and Harriott).

$$
D_{A B}=\left(0.250 \times 10^{-4}\right)\left(3.875 \times 10^{-4}\right)=0.969 \mathrm{ft}^{2} / \mathrm{h}
$$

> Using Appendix A. 2 (Christie John Geankoplis), the vapor pressure of water at $20^{\circ} \mathrm{C}$ is 17.54 mmHg

$$
\begin{aligned}
& p_{A l}=\frac{17.54}{760}=0.0231 \mathrm{~atm}=0.0231\left(1.01325 \times 10^{5}\right)=2.341 \times 10^{3} \mathrm{~Pa} \\
& p_{A 2}=0(\text { pure air })
\end{aligned}
$$

$T=460+68=528^{\circ} \mathrm{R}=293 \mathrm{~K}$
$R=82.057 \mathrm{~cm}^{3}$ atm $/ \mathrm{gmole} \cdot \mathrm{K}=0.730 \mathrm{ft}^{3} \cdot$ atm $/ \mathrm{lbmole} \cdot$ ${ }^{\circ}$ R
$>$ In order to calculate the value of $p_{B M}$:

$$
\begin{aligned}
& p_{B 1}=P-p_{A 1}=1.00-0.0231=0.9769 \mathrm{~atm} \\
& p_{B 2}=P-p_{A 2}=1.00-0=1.00 \mathrm{~atm}
\end{aligned}
$$

> Therefore:

$$
p_{B M}=\frac{p_{B 2}-p_{B 1}}{\ln \left(p_{B 2} / p_{B 1}\right)}=\frac{1.00-0.9769}{\ln (1.00 / 0.9769)}=0.988 \mathrm{~atm}=1.001 \times 10^{5} \mathrm{~Pa}
$$

Since $p_{B 1}$ is close to $p_{B 2}$, the linear mean $\left(p_{B 1}+p_{B 2}\right) / 2$ could be used and would be very close to $p_{B M}$.

Substituting in Eq. (44) with $z_{2}-z_{1}=0.5 \mathrm{ft}(0.1524 \mathrm{~m})$,

 thus:$$
\begin{aligned}
N_{A} & =\frac{D_{A B} P}{R T\left(z_{2}-z_{1}\right) p_{B M}}\left(p_{A 1}-p_{A 2}\right) \\
& \left.=\frac{0.969\left(\frac{f t^{2}}{h}\right)(1.0)(\mathrm{atm})(0.0231-0)(\mathrm{atm})}{0.730\left(\frac{\mathrm{ft}}{}{\mathrm{Ibmol} \cdot{ }^{3} R}^{0} \mathrm{~atm}\right.}\right)(528)\left({ }^{0} R\right)(0.5)(\mathrm{ft})(0.988)(\mathrm{atm}) \\
& =1.175 \times 10^{-4} \mathrm{lbmole} / f t^{2} \cdot \mathrm{~h}
\end{aligned}
$$

$$
\begin{aligned}
N_{A} & =\frac{D_{A B} P_{T}}{R T\left(z_{2}-z_{1}\right) p_{B M}}\left(p_{A l}-p_{A 2}\right) \\
& =\frac{\left(0.250 \times 10^{-4}\right)\left(\frac{\mathrm{m}^{2}}{s}\right)\left(1.01325 \times 10^{5}\right)(\mathrm{Pa})\left(2.341 \times 10^{3}-0\right)(\mathrm{Pa})}{8314\left(\frac{\mathrm{~m}^{3} \cdot \mathrm{~Pa}}{\mathrm{kgmol} \cdot \mathrm{~K}}\right)(293)(\mathrm{K})(0.1524)(\mathrm{m})\left(1.001 \times 10^{5}\right)(\mathrm{Pa})} \\
& =1.595 \times 10^{-7} \mathrm{kgmole} / \mathrm{m}^{2} \cdot \mathrm{~s}
\end{aligned}
$$

Molecular Diffusion in Liquids

$>$ Diffusion of solutes in liquid is very important in many industrial processes especially in separation operations such as:

1) Gas absorption
2) Distillation
3) Liquid-liquid extraction or solvent extraction
> Rate of molecular diffusion in liquids is considerably slower than in gases.
$>$ The molecules in a liquid are very close together compared to a gas. Therefore, the molecules of the diffusing solute A will collide with molecules of liquid B more often and diffuse more slowly than in gases.
> For diffusion in liquids, an important difference from diffusion in gases is that the diffusivities are often dependent on the concentration of the diffusing components.
> Similar to those for gases, equations for diffusion in liquids can be classified in two cases:
4) Steady-state equimolar counterdiffusion,

Starting from general Eq. (24): $N_{A}=-c D_{A B} \frac{d x_{A}}{d z}+\frac{c_{A}}{c}\left(N_{A}+N_{B}\right)$ and knowing $N_{A}=-N_{B}$, then:

$$
\begin{equation*}
J_{A}=\frac{D_{A B} c_{a v}}{z_{T}}\left(x_{A i}-x_{A}\right)=\frac{D_{A B}}{z_{T}}\left(c_{A i}-c_{A}\right) \tag{55}
\end{equation*}
$$

Note that $\boldsymbol{c}_{\boldsymbol{T}}$ is consider as $\boldsymbol{c}_{\mathrm{av}}$
$c_{a v}$ is defined as follows:

$$
\begin{equation*}
c_{a v}=\left(\frac{\rho}{M}\right)_{a v}=\frac{\left(\frac{\rho_{1}}{M_{1}}+\frac{\rho_{2}}{M_{2}}\right)}{2} \tag{56}
\end{equation*}
$$

where:

$c_{a v} \quad=$ average total concentration of $A+B\left(\mathrm{kgmole} / \mathrm{m}^{3}\right)$
$M_{1} \quad=$ average molecular weight of the solution at point 1 (kg mass/kgmole)
$\rho_{1} \quad=$ average density of the solution at point $1\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$
2) Steady-state diffusion of A through nondiffusing B

Since $N_{B}=0$, If Eq. (44) is rewritten in terms of concentrations by substituting, $c_{a v}=P / R T, c_{A 1}=$ $p_{A 1} / R T$, and $x_{B M}=p_{B M} / P$, we obtain the equation for liquids at steady state:

$$
\begin{equation*}
N_{A}=\frac{D_{A B} c_{a v}}{\left(z_{2}-z_{1}\right) x_{B M}}\left(x_{A l}-x_{A 2}\right) \tag{57}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{B M}=\frac{x_{B 2}-x_{B 1}}{\ln \left(x_{B 2} / x_{B 1}\right)} \tag{58}
\end{equation*}
$$

Note that $x_{A 1}+x_{B 1}=x_{A 2}+x_{B 2}=1.0$. For dilute solution, $x_{B M}$ is close to 1.0 and c is essentially constant. Then, the Eq.(57) simplifies to:

$$
\begin{equation*}
N_{A}=\frac{D_{A B}}{\left(z_{2}-z_{1}\right)}\left(c_{A 1}-c_{A 2}\right) \tag{59}
\end{equation*}
$$

Example:

Calculate the rate of diffusion of acetic acid (A) across a film of nondiffusing water (B) solution 1 mm thick at $17^{\circ} \mathrm{C}$ when the concentrations on opposite sides of the film are 9 and $3 \mathrm{wt} \%$, respectively. The diffusivity of acetic acid in the solution is $0.95 \times 10^{-9} \mathrm{~m}^{2} / \mathrm{s}$.

Solution:

Given:
$\left(z_{2}-z_{1}\right)=0.001 \mathrm{~m}$
$M_{A}=60.03 \mathrm{~kg} / \mathrm{kmole}$
$M_{B}=18.02 \mathrm{~kg} / \mathrm{kmole}$
At $17^{\circ} \mathrm{C}$: Density of the 9% solution $=1012 \mathrm{~kg} / \mathrm{m}^{3}$
Density of the 3% solution $=1003.2 \mathrm{~kg} / \mathrm{m}^{3}$

Consider basis of solution $=1 \mathbf{k g}$,

At point 1:

$x_{A 1}=\frac{0.09 / 60.03}{0.09 / 60.03+0.91 / 18.02}=\frac{0.0015}{0.0520}=0.0288$ mole fraction acetic acid
$x_{B 1}=1-0.0288=0.9712$ mole fraction water

Molecular weight of the solution, $M_{1}=\frac{1}{0.0520}=19.21 \mathrm{~kg} / \mathrm{kmole}$
$\frac{\rho_{1}}{M_{1}}=\frac{1012}{19.21}=52.7 \mathrm{kmole} / \mathrm{m}^{3}$

Similarly, at point 2:

$x_{A 2}=\frac{0.03 / 60.03}{0.03 / 60.03+0.97 / 18.02}=\frac{0.0005}{0.0543}=0.0092$ mole fraction acetic acid
$x_{B 2}=1-0.0092=0.9908$ mole fraction water
Molecular weight of the solution, $M_{2}=\frac{1}{0.0543}=18.42 \mathrm{~kg} / \mathrm{kmole}$
$\frac{\rho_{2}}{M_{2}}=\frac{1003.2}{18.42}=54.5 \mathrm{kmole} / \mathrm{m}^{3}$
Then,

$$
\left(\frac{\rho}{M}\right)_{a v}=\frac{52.7+54.5}{2}=53.6 \mathrm{kmole} / \mathrm{m}^{3}
$$

$$
x_{B M}=\frac{x_{B 2}-x_{B 1}}{\ln \left(x_{B 2} / x_{B 1}\right)}=\frac{0.9908-0.9712}{\ln (0.99080 .9712)}=0.980
$$

Finally, substitute all known values in the Eq.:

$$
\begin{aligned}
N_{A} & =\frac{0.95 \times 10^{-9}\left(\frac{\mathrm{~m}^{2}}{s}\right)}{(0.001)(\mathrm{m})(0.980)}(53.6)\left(\frac{\mathrm{kmol}}{\mathrm{~m}^{3}}\right)(0.0288-0.0092) \\
& =1.018 \times 10^{-6} \mathrm{kmole} / \mathrm{m}^{2} \cdot \mathrm{~s}
\end{aligned}
$$

