
equations are then solved for the output variable of interest in terms of the input
variable from which the transfer function is evaluated. Example 2.17 demonstrates this
problem-solving technique.

Example 2.17

Transfer Function—Two Degrees of FreedomTransfer Function—Two Degrees of Freedom

PROBLEM: Find the transfer function, X2�s�=F�s�, for the system of Figure 2.17(a).

SOLUTION: The system has two degrees of freedom, since each mass can be moved in
the horizontal direction while the other is held still. Thus, two simultaneous equations of
motion will be required to describe the system. The two equations come from free-body
diagrams of each mass. Superposition is used to draw the free-body diagrams. For
example, the forces on M1 are due to (1) its own motion and (2) the motion of M2
transmitted to M1 through the system. We will consider these two sources separately.

Ifwe holdM2 still andmoveM1 to the right, we see the forces shown inFigure 2.18(a).
If we holdM1 still andmoveM2 to the right, we see the forces shown in Figure 2.18(b). The
total force on M1 is the superposition, or sum, of the forces just discussed. This result is
shown in Figure 2.18(c). ForM2, we proceed in a similar fashion: First we moveM2 to the
right while holdingM1 still; then we moveM1 to the right and holdM2 still. For each case
we evaluate the forces on M2. The results appear in Figure 2.19.

K1 K3

f(t)
fv3

fv1 fv2

M1 M2K2

x1(t) x2(t)

(a)

(fv3s+K2)

Δ
X2(s)F(s)

(b)

FIGURE 2.17 a. Two-
degrees-of-freedom
translational mechanical
system;8 b. block diagram

K1X1(s)

fv1sX1(s)

F(s)

M1s
2X1(s)

a

fv3sX1(s)

K2X1(s)

(b)

fv3sX2(s)

K2X2(s)

(K1 + K2)X1(s)

F(s)

M1s
2X1(s)

(fv1 
+ fv3)sX1(s)

fv3sX2(s)

K2X2(s)

(c)

(  )

M1 M1

M1

FIGURE 2.18 a. Forces on
M1 due only to motion of M1;
b. forces on M1 due only to
motion of M2; c. all forces
on M1

Virtual Experiment 2.1
Vehicle Suspension

Put theory into practice
exploring the dynamics of
another two-degrees-of-
freedom system—a vehicle
suspension system driving
over a bumpy road and
demonstrated with the
Quanser Active Suspension
System modeled in
LabVIEW.

© Debra Lex

Virtual experiments are found
on Learning Space.

8 Friction shown here and throughout the book, unless otherwise indicated, is viscous friction. Thus, fv1 and fv2 are
not Coulomb friction, but arise because of a viscous interface.
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Notice again, in Eq. (2.118), that the form of the equations is similar to electrical mesh
equations:

Sum of
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to the motion

at x1

2

6666664

3

7777775
X1�s� �

Sum of

impedances
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x1 and x2

2

66664

3

77775
X2�s� �

Sum of

applied forces

at x1

2

64

3

75 (2.120a)

�

Sum of

impedances

between

x1 and x2

2

66664

3

77775
X1�s� �

Sum of
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connected

to the motion

at x2

2
6666664

3
7777775
X2�s� �

Sum of

applied forces

at x2

2

64

3

75 (2.120b)

The pattern shown in Eq. (2.120) should now be familiar to us. Let us use the concept to
write the equations of motion of a three-degrees-of-freedom mechanical network by
inspection, without drawing the free-body diagram.

The Laplace transform of the equations of motion can now be written from
Figures 2.18(c) and 2.19(c) as

�M1s2�Fv1 � fv3 �s � �K1 � K2��X1�s� � � fv3s � K2�X2�s� � F�s� (2.118a)

� � fv3s � K2�X1�s� � �M2s
2 � � fv2 � fv3�s � �K2 � K3��X2�s� � 0 (2.118b)

From this, the transfer function, X2�s�=F�s�, is

X2�s�
F�s� � G�s� �

� fv3s � K2�
Δ

�2.119�

as shown in Figure 2.17(b) where

Δ �
%%%%%
�M1s2 � � fv1 � fv3�s � �K1 � K2�� �� fv3s � K2�

�� fv3s � K2� �M2s2 � � fv2 � fv3 �s � �K2 � K3��

%%%%%

K2X2(s)

fv2sX2(s)

M2s
2X2(s)

fv3sX2(s)

(a)

K3X2(s)

(b)

fv3sX1(s)

(K2 + K3)X2(s)

M2s
2X2(s)

(fv2 + fv3)sX2(s)
fv3sX1(s)

K2X1(s)

(c)

K2X1(s)

M2 M2

M2

FIGURE 2.19 a. Forces on
M2 due only to motion of M2;
b. forces on M2 due only to
motion of M1; c. all forces
on M2
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Example 2.18

Equations of Motion by InspectionEquations of Motion by Inspection

PROBLEM: Write, but do not solve, the equations of motion for the mechanical network
of Figure 2.20.

SOLUTION: The system has three degrees of freedom, since each of the three masses
can be moved independently while the others are held still. The form of the equations
will be similar to electrical mesh equations. For M1,
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�2.121�

Similarly, for M2 and M3, respectively,

�
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x2(t)

x3(t)

f (t)

fv1 fv2

K1 K2

fv3

M2M1

fv4
M3

x1(t)

FIGURE 2.20 Three-degrees-
of-freedom translational
mechanical system
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M1 has two springs, two viscous dampers, and mass associated with its motion.
There is one spring between M1 and M2 and one viscous damper between M1 and M3.
Thus, using Eq. (2.121),

�M1s2 � � fv1 � fv3 �s � �K1 � K2��X1�s� � K2X2�s� � fv3sX3�s� � 0 �2.124�

Similarly, using Eq. (2.122) for M2,

�K2X1�s� � �M2s2 � � fv2 � fv4 �s � K2�X2�s� � fv4sX3�s� � F�s� �2.125�

and using Eq. (2.123) for M3,

�fv3sX1�s� � fv4sX2�s� � �M3s
2 � � fv3 � fv4�s�X3�s� � 0 �2.126�

Equations (2.124) through (2.126) are the equations of motion. We can solve them for any
displacement, X1�s�; X2�s�; or X3�s�, or transfer function.

Skill-Assessment Exercise 2.8

PROBLEM: Find the transfer function, G�s��X2�s�=F�s�, for the translational mechanical
system shown in Figure 2.21.

ANSWER: G�s� �
3s � 1

s�s3 � 7s2 � 5s � 1�
The complete solution is at www.wiley.com/college/nise.

fv1
= 1 N-s/m

fv2
= 1 N-s/m fv4

= 1 N-s/m
fv3

= 1 N-s/m

K= 1 N/m

M1 = 1 kg M2 = 1 kg

x1(t)

f (t)

x2(t)

FIGURE 2.21 Translational
mechanical system for Skill-
Assessment Exercise 2.8
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2.6 Rotational Mechanical System Transfer Functions
Having covered electrical and translational mechanical systems, we now move on to
consider rotational mechanical systems. Rotational mechanical systems are handled the
same way as translational mechanical systems, except that torque replaces force and angular
displacement replaces translational displacement. The mechanical components for rotational
systems are the same as those for translational systems, except that the components undergo
rotation instead of translation. Table 2.5 shows the components along with the relationships
between torque and angular velocity, as well as angular displacement. Notice that the symbols
for the components look the same as translational symbols, but they are undergoing rotation
and not translation.

Also notice that the term associated with the mass is replaced by inertia. The
values of K, D, and J are called spring constant, coefficient of viscous friction, and
moment of inertia, respectively. The impedances of the mechanical components are also
summarized in the last column of Table 2.5. The values can be found by taking the
Laplace transform, assuming zero initial conditions, of the torque-angular displacement
column of Table 2.5.

The concept of degrees of freedom carries over to rotational systems, except that
we test a point of motion by rotating it while holding still all other points of motion. The
number of points of motion that can be rotated while all others are held still equals the
number of equations of motion required to describe the system.

Writing the equations of motion for rotational systems is similar to writing them for
translational systems; the only difference is that the free-body diagram consists of torques
rather than forces. We obtain these torques using superposition. First, we rotate a bodywhile
holding all other points still and place on its free-body diagram all torques due to the body’s
own motion. Then, holding the body still, we rotate adjacent points of motion one at a time
and add the torques due to the adjacent motion to the free-body diagram. The process is
repeated for each point of motion. For each free-body diagram, these torques are summed
and set equal to zero to form the equations of motion.

TABLE 2.5 Torque-angular velocity, torque-angular displacement, and impedance rotational
relationships for springs, viscous dampers, and inertia

Component
Torque-angular
velocity

Torque-angular
displacement

Impedence
ZM�s� � T�s�=θ�s�

K

Spring
T(t)    (t)θ

T�t� � K
R t
0ω�τ�dτ T�t� � Kθ�t� K

D

Viscous
damper

T(t)    (t)θ

T�t� � Dω�t� T�t� � Ddθ�t�
dt

Ds

J

Inertia
T(t)    (t)θ

T�t� � J dω�t�
dt T�t� � J d

2θ�t�
dt2

Js2

Note: The following set of symbols and units is used throughout this book: T�t� � N-m �newton-meters�,
θ�t� � rad �radians�, ω�t� � rad/s �radians/second�, K � N-m/rad �newton-meters/radian�, D � N-m-s/rad �newton-
meters-seconds/radian�: J � kg-m2�kilograms-meters2 � newton-meters-seconds2/radian�.
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