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CHAPTER#8 
 

8. Time Domain Analysis of Control Systems 

8.1. Time response 
Time response c(t)is the variation of output with respect to time. The part of time response 
that goes to zero after large interval of time is called transient response ctr(t). The part of time 
response that remains after transient response is called steady-state response css(t). 

 

 

Fig.7.1. Time response of a system 

 

8.2. System dynamics 

System dynamics is the study of characteristic and behaviour of dynamic systems 

i.e. 

i. Differential equations: First-order systems and Second-order systems, 
ii. Laplace transforms, 
iii. System transfer function, 
iv. Transient response: Unit impulse, Step and Ramp 

 

Laplace transforms convert differential equations into algebraic equations. They are related to 
frequency response 

     
0

( ) stx t e dt


  x t X sL  (8.1) 
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No. Function Time-domain 

x(t)= ℒ-1{X(s)} 

Laplace domain 

X(s)= ℒ{x(t)} 

1 Delay δ(t-τ) e-τs 

2 Unit impulse δ(t) 1 

3 Unit step u(t) 

s
1

 

4 Ramp t 

2

1

s
 

5 Exponential decay e-αt 

s
1

 

6 Exponential approach  te 1  
)( 


ss

 

7 Sine sin ωt 
22 


s

 

8 Cosine cos ωt 
22 s

s
 

9 Hyperbolic sine sinh αt 
22 


s

 

10 Hyperbolic cosine cosh αt 
22 s

s
 

11 Exponentially decaying sine 
wave 

te t  sin  
22)( 


s

 

12 Exponentially decaying cosine 
wave 

te t  cos  
2 2( )

s
s


 


 
 

 

8.3. Forced response 

 1 2

1 2

( )( ) ( )
( ) ( ) ( ) ( )

( )( ) ( )
m

n

K s z s z s z
C s G s R s R s

s p s p s p
  

 
  




 (8.2) 

R(s) input excitation 
 

8.4. Standard test signals 
8.4.1. Impulse Signal: An impulse signal δ(t) is mathematically defined as follows. 

  
; 0

0 ; t 0

undefined t
t

 
  

 (8.3) 

Laplace transform of impulse signal is 



45 
 

   1s   (8.4) 

 

 

Fig.7.2. Impulse signal 

 

Dirac delta function 
 ( ) ( )ix t x t a   (8.5) 

 

Integral property of Dirac delta function 

 ( ) ( ) ( )o ot t t dt t  




   (8.6) 

Laplace transform of an impulse input 

 
0

( ) ( )st sa
i iX s e x t a dt x e


     (8.7) 

8.4.2. Step Signal: A step signal u(t) is mathematically defined as follows. 

  
0 ; 0

; t 0

t
u t

K

 
  

 (8.8) 

Laplace transform of step signal is 

   K
U s

s
  (8.9) 
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Fig.7.2. Step signal 

 

8.4.3. Ramp Signal: A step signal r(t) is mathematically defined as follows. 

  
0 ; 0

; t 0

t
r t

Kt

 
  

 (8.10) 

Laplace transform of ramp signal is 

   2

K
R s

s
  (8.11) 

 

 

Fig.7.3. Ramp signal 

 

8.4.4. Parabolic Signal A step signal a(t) is mathematically defined as follows. 

   2

0
; 0

; t 0
2

t
a t Kt

  
 

 (8.12) 

Laplace transform of parabolic signal is 

   3

K
A s

s
  (8.13) 

 

 

Fig.7.4. Parabolic signal 

 

8.4.5. Sinusoidal Signal A sinusoidal x(t) is mathematically defined as follows. 
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   sinx t t  (8.14) 

Laplace transform of sinusoidal signal is 

   2 2
0

sinstX s e t dt
s







 

  (8.15) 

 

 

Fig.7.4. Sinusoidal signal 

 

8.5. Steady-state error: 

A simple closed-loop control system with negative feedback is shown as follows. 

 

 
Fig.7.5. A simple closed-loop control system with negative feedback 

Here, 

      E s R s B s   (8.16) 

      B s C s H s  (8.17) 

      C s E s G s  (8.18) 

Applying (1) in (9), 

        E s R s C s H s   (8.19) 

Using (11) in (12), 

          E s R s E s G s H s   (8.20) 

        1 G s H s E s R s       (8.21) 
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   1

R s
E s

G s H s
 


 (8.22) 

Steady-state error, 

    
0

lim limss t s
e e t sE s

 
   (8.23) 

Using (15) in (16), 

    
   0 0

lim lim
1ss

s s

sR s
e sE s

G s H s 
 


 (8.24) 

Therefore, steady-state error depends on two factors, i.e. 

(a) type and magnitude of R(s) 
(b) open-loop transfer function G(s)H(s) 

 

8.6. Types of input and Steady-state error: 
8.6.1. Step Input 

   A
R s

s
  (8.25) 

Using (18) in (17), 

 
       0 0

lim lim
1 1ss s s

A
s

As
e

G s H s G s H s 

 
   

 
 (8.26) 

 
   

0
1 lim 1ss

P
s

A A
e

G s H s K


  
 

 (8.27) 

Where, 

    
0

limP s
K G s H s


  (8.28) 

 

8.6.2. Ramp Input 

   2

A
R s

s
  (8.29) 

Using (18) in (17), 

 

       

   

   

2

0 0

0

0

lim lim
1 1

lim

lim

ss
s s

ss
s

ss
V

s

A
s

Ase
G s H s s G s H s

A
e

s sG s H s

A A
e

sG s H s K

 





 
 
  

    

 


  

 (8.30) 

Where, 
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0

limV s
K sG s H s


  (8.31) 

 

8.6.3. Parabolic Input 

   3

A
R s

s
  (8.32) 

Using (18) in (17), 

 

       

   

   

3

20 0

2 20

2

0

lim lim
1 1

lim

lim

ss
s s

ss
s

ss
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s

A
s
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A
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e
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 (8.33) 

Where, 

    2

0
limA
s

K s G s H s


  (8.34) 

Types of input and steady-state error are summarized as follows. 

 

Error Constant Equation Steady-state error (ess) 

Position Error Constant (KP)    
0

limP
s

K G s H s


  

1ss
P

A
e

K



 

Velocity Error Constant (KV)    
0

limV s
K sG s H s


  

ss
V

A
e

K
  

Acceleration Error Constant (KA)    2

0
limA
s

K s G s H s


  
ss

A

A
e

K
  

 

8.7. Types of open-loop transfer function G(s)H(s)and Steady-state error: 
8.7.1. Static Error coefficient Method 

The general form of G(s)H(s) is 

         
    

1 21 1 ... 1

1 1 ... 1
n

j
a b m

K T s T s T s

s T s
G

T s s
s

T
s H

  


  
 (8.35) 

Here, j = no. of poles at origin (s = 0) 

or, type of the system given by eq (28) is j. 

8.7.1.1. Type 0 

         
    

1 21 1 ... 1

1 1 ... 1
n

a b m

K T s T s T s

T s T s
G s

s
s

T
H

  


  
 (8.36) 

Here, 
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0

limP s
K G s H s K


   (8.37) 

Therefore, 

 
1ss

A
e

K



 (8.38) 

8.7.1.2. Type 1 

         
    

1 21 1 ... 1

1 1 ... 1
n

a b m

K T s T s T
G s

s

s T s T s T s
H s

  


  
 (8.39) 

Here, 

    
0

limV
s

K sG s H s K


   (8.40) 

Therefore, 

 ss
A

e
K

  (8.41) 

8.7.1.3. Type 2 

         
    

1 2
2

1 1 ... 1

1 1 ... 1
n

a b m

K T s T s T s

s T s T s T s
G s H s

  


  
 (8.42) 

Here, 

    2

0
limA
s

K s G s H s K


   (8.43) 

Therefore, 

 ss
A

e
K

  (8.44) 

Steady-state error and error constant for different types of input are summarized as follows. 

 

Type 
Step input Ramp input Parabolic input 

KP ess KV ess KA ess 

Type 0 K  
1

A
K

 0    0    

Type 1   0  K  
A
K

 0    

Type 2   0   0  K  
A
K

 

 

The static error coefficient method has following advantages: 

 Can provide time variation of error 
 Simple calculation 
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But, the static error coefficient method has following demerits: 

 Applicable only to stable system 
 Applicable only to three standard input signals 
 Cannot give exact value of error. It gives only mathematical value i.e. 0 or ∞ 
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8.7.2. Generalized Error coefficient Method 

From eq (15), 

       1

1
E s R s

G s H s

 
  

  
 

So, 

      1 2E s F s F s  (8.45) 

Where, 
   1

1

1
F

G s H s



 and    2F s R s  

Using convolution integral to eq (38) 

          1 2 1

0 0

t t

e t f f t d f r t d           (8.46) 

Using Taylor’s series of expansion to  r t  , 

          
2 3

...
2! 3!

r t r t r t r t r t
 

           (8.47) 

Now, applying eq (40) in eq (39), 

                  
2 3

1 1 1 1

0 0 0 0

...
2! 3!

t t t t

e t f r t d r t f d r t f d r t f d
                    (8.48) 

Now, steady-state error, ess is 

  limss t
e e t


  (8.49) 

Therefore, 

                 

               

2 3

1 1 1 1

0 0 0 0

2 3

1 1 1 1

0 0 0 0

lim lim ...
2! 3!

...
2! 3!

t t t t

ss
t t

ss

e e t f r t d r t f d r t f d r t f d

e f r t d r t f d r t f d r t f d

         

         

 

   

 
        

  

       

   

   
 (8.50) 

Eq (44) can be rewritten as 

        32
0 1 ...

2! 3!ss
CC

e C r t C r t r t r t        (8.51) 

Where, C0, C1, C2, C3, etc. are dynamic error coefficients. These are given as 
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0 1 1
0

0

1
1 1

0
0

22
1

2 1 20
0

33
1

3 1 30
0

lim

lim

lim
2!

lim
3!

s

s

s

s

C f d F s

dF s
C f d

ds

d F s
C f d

ds

d F s
C f d

ds

 

  


 


 

















 

  

 

   









, and so on… (8.52) 

 

8.8. First-order system: 

A Governing differential equation is given by 

 ( )y y Kx t   (8.53) 

Where, Time constant, sec =  , 
Static sensitivity (units depend on the input and output variables) = K , 
y(t) is response of the system and  
x(t) is input excitation 
The System transfer function is 

 
( )

( )
( ) (1 )

Y s K
G s

X s s
 


 (8.54) 

 

 
 

Pole-zero map of a first-order system 

 

 

Normalized response 

In this type of response 
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 Static components are taken out leaving only the dynamic component 
 The dynamic components converge to the same value for different physical systems of 

the same  type or order 
 Helps in recognizing typical factors of a system 

 
8.8.1. Impulse input to a first-order system 
Governing differential equation 
 ( )iy y Kx t    (8.55) 

Laplacian of the response 

 
1

( )
1(1 )

i iKx Kx
Y s

s s 


 
 

   
  

 

 (8.56) 

Time-domain response 

 ( )
t

iKx
y t e 




  (8.57) 

Impulse response function of a first-order system 

 ( )
tK

h t e 




  (8.58) 

By putting x
i
=1 in the response 

Response of a first-order system to any force excitation 

 
0

( ) ( )
t tK

y t e F t d  



   (8.59) 

The above equation is called Duhamel’s integral. Normalized response of a first-order system to 
impulse input is shown below. 
 

 

 

8.8.2. Step input to a first-order system 
Governing differential equation 
 ( )iy y Kxu t   (8.60) 

( )

i

y t
Kx



/t 
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Laplacian of the response 

 ( )
1(1 )

i i iKx Kx Kx
Y s

s s s s


  
 

 (8.61) 

Time-domain response 

 ( ) 1
t

iy t Kx e 
 

   
 

 (8.62) 

Normalized response of a first-order system to impulse input is shown below. 
 

 

 

8.8.3. Ramp input to a first-order system 
Governing differential equation 
 y y Kt   (8.63) 

Laplacian of the response 

 
2 2

1
( )

1(1 )

K
Y s

s s s s s

 




   
 

 (8.64) 

Time-domain response 

 
( )

ty t
t e

K
 


    (8.65) 

Normalized response of a first-order system to impulse input is shown below. 
 

( )

i

y t
Kx



/t 
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8.8.4. Sinusoidal input to a first-order system 
Governing differential equation 
 siny y KA t    (8.66) 

Laplacian of the response 

 
 22 2 2 2 2 2

1
( )

(1 ) 1/1

K A s
Y s

s s s s s
   

    
               

 (8.67) 

Time-domain response 

 
 

/
2

( ) 1
cos sin

1

ty t
e t t

KA
    


    

 
 (8.68) 

Normalized response of a first-order system to impulse input is shown below. 
 

 

 

8.9. Second-order system 

A Governing differential equation is given by 

( )

i

y t
Kx



/t 
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 ( )my cy ky Kx t     (8.69) 

Where,  = Time constant, sec, 
K = Static sensitivity (units depend on the input and output variables), 
m = Mass (kg), 
c = Damping coefficient (N-s/m), 
k = Stiffness (N/m), 
y(t) is response of the system and  
x(t) is input excitation 
 
The System transfer function is 

 
 2 2

( )

( ) 2 n n

Y s K
X s m s s 


 

 (8.70) 

 

 

 

Pole-zero map 

(a) ζ>1 over damped 
Poles are:  

  2
1,2 1ns        (8.71) 

Graphically, the poles of an over damped system is shown as follows. 

 

 

(b) ζ =1 critically damped 
Poles are:  

 1,2 ns    (8.72) 

Graphically, the poles of an critically damped system is shown as follows. 
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(c) ζ<1 under damped 
Poles are:  

 
 2

1,2

1,2

j 1n

n d

s

s j

  

 

   

   
 (8.73) 

Where, d Damped natural frequency 

 21d n     (8.74) 

Graphically, the poles of an critically damped system is shown as follows. 

 

 

Here, 
2

tan
1







 

 

(d) ζ = 0 un-damped 
Poles are:  

 1,2 j ns     (8.75) 
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Solved problems: 

1. A single degree of freedom spring-mass-damper system has the following data: spring stiffness 20 
kN/m; mass 0.05 kg; damping coefficient 20 N-s/m. Determine 

(a) undamped natural frequency in rad/s and Hz  
(b) damping factor 
(c) damped natural frequency n rad/s and Hz. 

If the above system is given an initial displacement of 0.1 m, trace the phasor of the system for three 
cycles of free vibration. 

Solution: 

320 10
632.46 rad/s

0.05n

k
m

 
    

632.46
100.66 Hz

2 2
n

nf

 

    

3

20
0.32

2 2 20 10 0.05

c

km
   

 
 

2 21 632.46 1 0.32 600rad/sd n        

600
95.37 Hz

2 2
d

df

 

    

0.32 632.46( ) 0.1nt ty t Ae e     

 

2. A second-order system has a damping factor of 0.3 (underdamped system) and an un-damped 
natural frequency of 10 rad/s. Keeping the damping factor the same, if the un-damped natural 
frequency is changed to 20 rad/s, locate the new poles of the system? What can you say about the 
response of the new system? 

Solution: 

Given, 1 10 rad/sn   and 2 20 rad/sn   

1 1

2 21 10 1 0.3 9.54rad/sd n        

2 2

2 21 20 1 0.3 19.08 rad/sd n        

1 11,2 3 9.54n dp j j        
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2 23,4 6 19.08n dp j j        

2 2

0.3
tan 17.45

1 1 0.3

o



  

 
 

 

 

 

8.9.1. Second-order Time Response Specifications with Impulse input 
(a) Over damped case (ζ>1) 

General equation 

 22 ( )i
n n

Kx
y y y t

m
       (8.76) 

Laplacian of the output 

 

2 2

2 2 2

1
( )

2

1 1

2 1 ( 1) ( 1

i

n n

i

n n n n n

Kx
Y s

m s s

Kx

m s s

 

       

 
    

    
        

 (8.77) 

Time-domain response 

  2

2
( ) sinh 1

1
nti

n

n

Kx
y t e t

m
  

 


 
  
  

 (8.78) 

(b) Critically damped case (ζ=1) 
General equation 

 2 ( )i
n

Kx
y y t

m
    (8.79) 

Laplacian of the output 

 
2 2

1
( ) i

n

Kx
Y s

m s 
 

   
 (8.80) 

Time-domain response 

 ( ) nti
n

n

Kx
y t te

m



 

  
 

 (8.81) 

(c) Under damped case (ζ<1) 
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Poles are: 1,2 n ds j     

General equation 

 22 ( )i
n n

Kx
y y y t

m
       (8.82) 

Laplacian of the output 

 
1

( )
( )( )

i

n d n d

Kx
Y s

m s j s j   
 

      
 (8.83) 

Time-domain response 

 ( ) sinnti
d

d

Kx
y t e t

m
 


 

  
 

 (8.84) 

Normalized impulse-response of a second-order system with different damping factors are shown 
graphically as follows. 

 

 

Solved problems: 

3. A second-order system has an un-damped natural frequency of 100 rad/s and a damping factor of 
0.3. The value of the coefficient of the second time derivative (that is m) is 5.  If the static 
sensitivity is 10, write down the response (do not solve) for a force excitation shown in the figure 
in terms of the Duhamel’s integral for the following periods of time: 0<t<t1, t1<t<t2 and t>t2. 

 

Solution: 

Given, Undamped natural frequency ωn=100 rad/s 

Damping factor   =0.3 

Coefficient of the second time derivative m=5 
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Static sensitivity K=10 

2 21 100 1 0.3 95.39 rad/sd n        

Here, 
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8.9.2. Second-order Time Response Specifications with step input 

 
2 2

1
( )

( 1)( 1)
i

n n n n

Kx
Y s

m s s s     

    
       

 (8.85) 

    2 2
2 2

( ) 1 cosh 1 sinh 1
1

nti
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n

Kx
y t e t t
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 (8.86) 

 
1
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( )( )
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Kx
Y s

m s s j s j   
 

  
    

 (8.87) 

 2 2
( ) 1 cos sin

1
nti

d d
n

Kx
y t e t t

m
  

 


       
    

 (8.88) 
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8.10. Time Response Specifications with step-input for under-damped case 
For under-damped case, the step-response of a second-order is shown as follows 

 

 
2 2

( ) 1 sin( )
1

nt
i

d
n

Kx e
y t t
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 (8.89) 

 
2

1 1
tan





 

  (8.90) 

For this case, different time-domain specifications are described below.  
(i) Delay time, td  



64 
 

(ii) Rise time, tr 

(iii) Peak time, tp 

(iv) Peak overshoot, Mp 

(v) Settling time  
 
For unity step input,  
(i)Delay time, td: It is the time required to reach 50% of output.  

 
2

1
1 sin( )

2 1

n dt

d d d
e

y t t


 




   


 

 
1 0.7

d
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t
w


   (8.91) 

(ii) Rise time, tr:The time required by the system response to reach from 10% to 90% of the 
final value for over-damped case, from 0% to 100% of the final value for under-damped case 
and from 5% to 95% of the critically value for over-damped case.  
.  
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   (8.92) 

(iii) Peak time, tp:The time required by the system response to reach the first maximum value.  
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     ; where 1,2,3,...n   

For n=1, 

d pw t n   

 p
d
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w


   (8.93) 

(iv) Peak overshoot, Mp: It is the time required to reach 50% of output.  

    1
% 100

1

p
p

y t
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    (8.94) 

(iv) Settling time, ts: It is the time taken by the system response to settle down and stay with in 2%  
or 5%  its final value.  
For 2%  error band, 

 
4

s
n

t
w

  (8.95) 

For 5%  error band, 

 
3

s
n

t
w

  (8.96) 

 

Sl. No. 
Time Specifications 

Type Formula 

1 Delay time 
1 0.7

d
n

t
w


  

2 Rise time r
d

t
w

 
  

3 Peak time p
d

t
w


  

4 Maximum overshoot  
21% 100pM e






   

5 Settling time 
4

s
n

t
w
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Solved Problems: 

1. Consider the system shown in Figure 1. To improve the performance of the system a feedback is 
added to this system, which results in Figure 2. Determine the value of K so that the damping 
ratio of the new system is 0.4. Compare the overshoot, rise time, peak time and settling time and 
the nominal value of the systems shown in Figures 1 and 2. 

 

 

Figure 1 

 

Figure 2 

Solution: 

For Figure 1, 

 
 

 

 
2

20
1( ) 20

201 ( ) 201
1

c s s sG s
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Here, 2 20n   and 2 1n   

20n  rad/s and 
1 1

0.112
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For Figure 2, 
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s s K

   
   

 

 

Here, 2 20n   and 2 1 20Kn    

20n  rad/s 

But, given that 
1 20 1 20

0.4
2 2 20n

K K



 

    

0.128K   

Transient characteristics of Figures 1 and 2 
 
CharacteristicS Figure 1 Figure 2 
Overshoot, Mp 70% 25% 
Rise time, tr, sec 0.38 0.48 
Peak time, tp, sec 0.71 0.77 
Settling time (2%), sec 8 2.24 
Steady-state value, c∞ 1.0 1.0 
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Equation Chapter (Next) Section 1 
1.1. Transient Response using MATLAB 

Program 1: Find the step response for the following system 
 
  2

3 20

5 36

C s s
R s s s




 
 

Solution: 
>> num=[3 20] 
num= 
3 20 
>> den=[1 5 36] 
den= 
1 5 36 
>>sys=tf(num,den) 
Transfer function: 
       3s+20 
-------------------- 
    s^2+5s+36 
>>step(sys) 
 

Program 2: Find the step response for the following system 
 
  2

20

4 25

C s

R s s s


 
 

Solution: 
>> num=[20] 
num= 

20 
>> den=[1 425] 
den= 

1 4 25 
>>sys=tf(num,den) 
Transfer function: 
20 
-------------------- 
    s^2+4s+25 
>>step(sys) 
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2. Stability 
2.1. Concept of stability 

Stability is a very important characteristic of the transient performance of a system. Any working 
system is designed considering its stability. Therefore, all instruments are stable with in a boundary of 
parameter variations. 

A linear time invariant (LTI) system is stable if the following two conditions are satisfied. 

(i) Notion-1: When the system is excited by a bounded input, output is also bounded. 

Proof: 

A SISO system is given by 

 
 
   

1
0 1

1
0 1

...

...

m m
m

n n
n

C s b s b s b
G s

R s a s a s a





  
 

  
 (9.1) 

So,  

      1c t G s R s      (9.2) 

Using convolution integral method 

      
0

c t g r t d  


   (9.3) 

   1g G s   = impulse response of the system 

Taking absolute value in both sides, 

      
0

c t g r t d  


   (9.4) 

Since, the absolute value of integral is not greater than the integral of absolute value of the integrand 

 

     

     

     

0

0

0

c t g r t d

c t g r t d

c t g r t d

  

  

  







 

  

  







 (9.5) 

Let, r(t) and c(t) are bounded as follows. 

 
 
 

1

2

r t M

c t M

  

  
 (9.6) 

Then, 
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    1 2

0

c t M g d M 


   (9.7) 

Hence, first notion of stability is satisfied if  
0

g d 


  is finite or integrable. 

(ii) Notion-2: In the absence of the input, the output tends towards zero irrespective of initial 
conditions. This type of stability is called asymptotic stability. 

 

2.2. Effect of location of poles on stability 

 

Pole-zero map Normalized response 
Over-damped close-loop poles 

 
 

 
Critically damped close-loop poles 

Pole-zero map Normalized response 

 

 
Under-dampedclose-loop poles 

Pole-zero map Normalized response 



70 
 

  
Un-dampedclose-loop poles 

Pole-zero map Normalized response 

 
 

Negative Under-dampedclose-loop poles 
Pole-zero map Normalized response 

  
Negative Over-dampedclose-loop poles 

Pole-zero map Normalized response 
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2.3. Closed-loop poles on the imaginary axis 

Closed-loop can be located by replace the denominator of the close-loop response with s=jω. 

 

Example: 

1. Determine the close-loop poles on the imaginary axis of a system given below. 

 

Solution: 

Characteristics equation, 2( ) 0B s s s K     

Replacing s jw  

2( ) ( ) ( ) 0B j j j K       

2( ) 0K j      

Comparing real and imaginary terms of L.H.S. with real and imaginary terms of R.H.S., we get 

K  and 0   

Therefore, Closed-loop poles do not cross the imaginary axis. 

 

2. Determinetheclose the imaginary axis of a system given below. 
3 2( ) 6 8 0B s s s s K     . 

Solution: 

Characteristics equation, 

3 2( ) ( ) 6( ) 8 0B j j j j K         

2 3( 6 ) (8 ) 0K j        

Comparing real and imaginary terms of L.H.S. with real and imaginary terms of R.H.S., we get 

8   rad/s and 26 48K    

Therefore, Close-loop poles cross the imaginary axis for K>48. 

 

( )
( 1)

K
G s

s s





