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CHAPTER#8

8. Time Domain Analysis of Control Systems

8.1. Time response
Time response c(t)is the variation of output with respect to time. The part of time response

that goes to zero after large interval of time is called transient response c(t). The part of time
response that remains after transient response is called steady-state response cg(t).

c(t)
() IR S L e T DI CEPTEY
[i] 2 & .-'-. & 10 12 & 16 (1.1 20 t
| Transient state | Steady state
Gis (t) Css (t)
Fig.7.1. Time response of a system
8.2. System dynamics

System dynamics is the study of characteristic and behaviour of dynamic systems
Le.

i. Differential equations: First-order systems and Second-order systems,

ii. Laplace transforms,

iii. System transfer function,
iv. Transient response: Unit impulse, Step and Ramp

Laplace transforms convert differential equations into algebraic equations. They are related to
frequency response

L{x(t)}:X(s):TX(t)e’“dt (8.1)
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No. Function Time-domain Laplace domain
x(t)= L{X(s)} X(s)= L{x(O)}
1 Delay d(t-1) e®
2 Unit impulse o(t) 1
3 Unit step u(t) 1
s
4 Ramp t 1
PE
5 Exponential decay ¢ 1
s+o
6 Exponential approach (1 _ érat) a
s(s+a)
7 Sine sin ot )
s +o’
8 Cosine cos ot S
s +o’
9 Hyperbolic sine sinh ot a
sT—a’
10 Hyperbolic cosine cosh at S
S —a’
11 Exponentially decaying sine e “sin ot 0]
wave (s+a)’ +o’
12 Exponentially decaying cosine e cosmt s+a
wave (s+a)’ +a
8.3. Forced response
K(s—z)s—2z)...(s—z)
s = Gs) RLs) =222 .C) (8.2)

(s=pXs—py)...(s—p,)

R(s) input excitation

8.4. Standard test signals
8.4.1. Impulse Signal: An impulse signal 3(t) is mathematically defined as follows.

_ undefined ;t= 0}

s(="""0 (8.3)

Laplace transform of impulse signal is



&t)

Fig.7.2. Impulse signal

Dirac delta function

x(t) = x5(t- 2)

x(t) x0(t—a)

0 t=a Time
Integral property of Dirac delta function

[ $o(t-1)dt=9(,)

Laplace transform of an impulse input

X(s)= J e "x5(t—a)dt= xe™
0

8.4.2. Step Signal: A step signal u(t) is mathematically defined as follows.

(t) B 0 ;t<0
= K ;t>0
Laplace transform of step signal is

U(s) ==

u(t)

!
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(8.4)

8.5)

(8.6)

8.7)

(8.8)

(8.9)
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8.4.4.

8.4.5.
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Fig.7.2. Step signal

Ramp Signal: A step signal r(t) is mathematically defined as follows.

0 ;<0
r(t)= Kt ;tzo} (8.10)

Laplace transform of ramp signal is

R(s)=$]2—( 8.11)

rt) 4

Fig.7.3. Ramp signal

Parabolic Signal A step signal a(t) is mathematically defined as follows.

;<0
a(t)=K_t2 50 8.12)
2 bl
Laplace transform of parabolic signal is
K
A(s)= 7 (8.13)

a(t)

Fig.7.4. Parabolic signal

Sinusoidal Signal A sinusoidal x(t) is mathematically defined as follows.
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x(t)=sinwt (8.14)

Laplace transform of sinusoidal signal is

Xuﬁla%de=§+# (8.15)
Fig.7.4. Sinusoidal signal
8.5. Steady-state error:
A simple closed-loop control system with negative feedback is shown as follows.
R(s) G(s) >C(s)
H(s) |«
Fig.7.5. A simple closed-loop control system with negative feedback
Here,
E(s)=R(s)-B(s) (8.16)
B(s)=C(s)H(s) (8.17)
C(s)=E(s)G(s) (8.18)
Applying (1) in (9),
E(s)=R(s)-C(s)H(s) (8.19)
Using (11) in (12),
E(s)=R(s)- E(s)G(s)H(s) (8.20)

= [1+G(s)H(s)] E(s) = R(s) (8.21)



_ )
1+ G(s)H(s)

Steady-state error,

¢ = lim e(f)= lim SE(s)

Using (15) in (16),

e, =limsE(s)=1lim sR(s

Therefore, steady-state error depends on two factors, i.e.

(a) type and magnitude of R(s)
(b) open-loop transfer function G(s)H(s)

8.6. Types of input and Steady-state error:

8.6.1.

8.6.2.

Step Input

Using (18) in (17),

Where,

Ramp Input

Using (18) in (17),

Where,
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(8.22)

(8.23)

(8.24)

(8.25)

(8.26)

(8.27)

(8.28)

(8.29)

(8.30)
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KVZHH(I)SG(S)H(S) (8.31)
8.6.3. Parabolic Input
R(s)=§ (8.32)
Using (18) in (17),
§ A4
e, =lim s =lim A
Y01+ G(s)H(s) 0§ [1+G(s)H(s)]
A
=1i 8.33
T T e 2G(s) H(s) (839
=e, = A _A
s T q- 2 -
lim s G(s)H(s) K,
Where,
K, =lims’G(s) H(s) (8.34)

Types of input and steady-state error are summarized as follows.

Error Constant Equation Steady-state error (e)
Position Error Constant (Kp) K, =lim G( S) H( S) . A
50 ss
1+ K,
Velocity Error Constant (Ky) K, =lim SG( s) H( S) A
520 Cy = ?
1%
Acceleration Error Constant (K,) K =lim & G( S) H( S) A
A 50 ess = ?
A

8.7. Types of open-loop transfer function G(s)H(s)and Steady-state error:
8.7.1. Static Error coefficient Method

The general form of G(s)H(s) is

K(1+ Zs)(1+ Ts)...(1+ T,s)
Gls)H(s) = & (1+ T5)(1+ Ts)..(1+ T,9) (8:33)

Here, j = no. of poles at origin (s = 0)
or, type of the system given by eq (28) is j.
8.7.1.1. Type 0
K1+ Ts)(1+ Ls)...(1+ T,s)

G ) =7 5 (15 Tos) (15 1) (8:36)

Here,



Therefore,

8.7.1.2. Type 1

Here,

Therefore,

8.7.1.3. Type 2

Here,

Therefore,

K,=limG(s)H(s)=K

s—0

50

(8.37)

(8.38)

(8.39)

(8.40)

(8.41)

(8.42)

(8.43)

(8.44)

Steady-state error and error constant for different types of input are summarized as follows.

Step input Ramp input Parabolic input
Type
Kp Cgs Ky Css Ka Css
A
Type 0 K 0 0
ype 1+ K °° °°
A
Type 1 0 K — 0
ype S X o
A
Type 2 0 0 K —
yp ® ® X

The static error coefficient method has following advantages:

e Can provide time variation of error
e Simple calculation
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But, the static error coefficient method has following demerits:

e Applicable only to stable system
e Applicable only to three standard input signals
o Cannot give exact value of error. It gives only mathematical valuei.e. 0 or
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8.7.2. Generalized Error coefficient Method

From eq (15),
1
( ):L+ G(S)H(S)}R(S)
So,
E(s)=F(5)F(s) (8.45)
Where, £ = d F(s)=R(s)

1+ G(s)H(s)

Using convolution integral to eq (38)
t t
#)=[ £(z) £ (¢-7)dr = [ £(c)r(t-7)dr (8.46)
0 0

Using Taylor’s series of expansion to r(7-7),

! Tz n z-3 n
r(t=7)=r(f)—tr (t)+2—!r (t)—ar (1) +... (8.47)
Now, applying eq (40) in eq (39),
t t t Z'2 t T3
8= [ £()r(e)dr=[er'(2) £(r)dr+ | 57 () £(2)de - | 570 (@) (848)
0 0 0 0o~
Now, steady-state error, e is
¢, =lim e(?) (8.49)
Therefore,
t t ) L3
¢, =lime(7) = lim ! £(z)r(¢)de - { o' (¢) £(7)dr + { %ﬂ(r) £ (r)dr - { %r'"(t) £(z)dr +...
0 0 . OOTZ ) OOT3 )
S ! £(z)r(¢)dr - ! or'(£) £(7)dr + ! 57 g(f)dr—ﬁ/ (1) £(7)dr +..
(8.50)
Eq (44) can be rewritten as
e = Cr(t)+Cr’(t)+§r"(t)+§r’"(t)+ (8.51)
ss T -0 1 21 31 .

Where, Cy, Cy, Cs, Cs, etc. are dynamic error coefficients. These are given as
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0 , , ( ) , and so on... (8.52)
T . d°K(s
Cz - 2[; Ilv (T)dT lblgé ds?
0 3 3
: 10
G _g_ﬁ f(e)de+=lim=—3
8.8. First-order system:
A Governing differential equation is given by
y+1y=Kx(1) (8.53)

Where, Time constant, sec = 7,

Static sensitivity (units depend on the input and output variables) = K,
y(t) is response of the system and

x(t) is input excitation

The System transfer function is

YO g K
X - s (834

X(s) K Y(s)
-

(1+7s)

Pole-zero map of a first-order system

if") s plane

A

Normalized response

In this type of response



e Static components are taken out leaving only the dynamic component
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e The dynamic components converge to the same value for different physical systems of

the same type or order
e Helps in recognizing typical factors of a system

8.8.1. Impulse input to a first-order system
Governing differential equation

v+ = Kxd (1)

Laplacian of the response

Kx. Kx| 1
M=y~ c | 1
5+~
T
Time-domain response
t
=g
T

Impulse response function of a first-order system

t
ny="e
T

By putting x =1 in the response

Response of a first-order system to any force excitation

W= e Fu-man
T 0

(8.55)

(8.56)

(8.57)

(8.58)

(8.59)

The above equation is called Duhamel’s integral. Normalized response of a first-order system to

impulse input is shown below.

8.8.2. Step input to a first-order system
Governing differential equation

y+ 1= Kxu(r)

(8.60)
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Laplacian of the response

ns)=———=—-~=~L-——~=~ (8.61)
sl+zs) s o 1
T
Time-domain response
t
y(t):Kx{l—e T] (8.62)

Normalized response of a first-order system to impulse input is shown below.

I I i I 1
0 05 1 1.5 2 35 4 45 5

/<]

8.8.3. Ramp input to a first-order system
Governing differential equation

y+ty=Kt (8.63)
Laplacian of the response
He=o i 1 7, 7 (8.64)
s(l+ts) § s s+l
T
Time-domain response
t
M) e (8.65)

Normalized response of a first-order system to impulse input is shown below.
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=2 sec

A x(=t

o
K

steady-state

time lag

steady state
orror ©

I I I
o 1 2 a 4 8 9 10

8.8.4. Sinusocidal input to a first-order system
Governing differential equation
y+1 y= KAsin ot (8.66)

Laplacian of the response
K Ao 1) T T8 1
§) = = - + 8.67
Xs) (1+TS)(SZ+CL)2J 1+(a)r)2{s+l/r s+’ 52+a)2} (8.67)

Time-domain response

N)__ o . {Te"” —rcosa)t+isin a)t} (8.68)
KA 1+(wr) %

Normalized response of a first-order system to impulse input is shown below.

| Transient response

0.06

‘ ‘ ‘ ‘ Steady-state response
0.04 | ‘ l ) ¢ :

amplitude

ML

L i L L
05 1 15 2 25 a a5 4

time, sec

8.9.Second-order system

A Governing differential equation is given by
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my+ e+ ky= Kx(f) (8.69)

Where, = Time constant, sec,

K = Static sensitivity (units depend on the input and output variables),
m = Mass (kg),

¢ = Damping coefficient (N-s/m),

k = Stiffness (N/m),

y(t) is response of the system and

x(t) is input excitation

The System transfer function is

Ys) _ K
X(s) m{s2 +2§a)ns+a)§}

(8.70)

X(s) K Y6)
™ m{s2+2§a)ns+a):}

Pole-zero map

(a) &1 over damped
Poles are:

52=-0,(¢ 57 -1) .71
Graphically, the poles of an over damped system is shown as follows.

1(0 s plane

A

—o, (6 +:/E71)
x o
o, (-6 1)
(b) £ =1 critically damped
Poles are:
SI,Z = _a)n (872)

Graphically, the poles of an critically damped system is shown as follows.



‘|m s plane

—a,

(c) <1 under damped
Poles are:

S, =70, (é/ * JM)
= 85, =—C0,t jo,
Where, @, =Damped natural frequency
w,=01-¢
Graphically, the poles of an critically damped system is shown as follows.

| LO) s plane

¢
1-¢2

Here, tan 8 =

(d) £=0un-damped
Poles are:

58

(8.73)

(8.74)

(8.75)
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‘i('l s plane

Jo,

—Jo,

Solved problems:

1. A single degree of freedom spring-mass-damper system has the following data: spring stiffness 20
kN/m; mass 0.05 kg; damping coefficient 20 N-s/m. Determine

(a) undamped natural frequency in rad/s and Hz

(b) damping factor

(c) damped natural frequency n rad/s and Hz.
If the above system is given an initial displacement of 0.1 m, trace the phasor of the system for three
cycles of free vibration.

Solution:
3
o =\/z =4/20X10 = 632.46 rad/s
m 0.05
£=C0 03246 160 661z
2 2
20

=0.32

C
2Nkm  220%10° x0.05

w,=m\1-¢* =632.4631-0.32> =600rad/s

£=2a 090 g5 37y,
2r 2«

_Y(f) — Aefgw,,t — 0'16—0.32><632A46t

2. A second-order system has a damping factor of 0.3 (underdamped system) and an un-damped
natural frequency of 10 rad/s. Keeping the damping factor the same, if the un-damped natural
frequency is changed to 20 rad/s, locate the new poles of the system? What can you say about the
response of the new system?

Solution:

Given, @,, =10 rad/s and w,, = 20 rad/s
0, =, \1-¢* =10§1-0.3* =9.54rad/s
0, = o, \1-¢* =20J1-0.3" =19.08 rad/s

P, =—¢o, £ jo, =-3%/9.54
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Py =—Co, * jo, =-6% j19.08

tanﬁ = é’ = 03 =1745°
\/1—42 \/1—0.32
L6
2 __———_‘Ig‘oasplal'le
: |9 ----- 9.54
BN
e =
-6 -3
i ';777 -9.54
|
_____ —f19.08

8.9.1. Second-order Time Response Specifications with Impulse input
(a) Over damped case (>1)
General equation

Ax, 5(0) (8.76)

5/+ 2§w11y+ a)j.y:
m

Laplacian of the output

IR

m\ s +2fw,s+0]

8.77)
Ky | B |
2mw, ¢ -1 {(s+§a)n —o N -1) (s+lw,+oC —1}

Time-domain response

O [L} e *"sinh (co” ¢? —1) t (8.78)

(b) Critically damped case (=1)
General equation
Ky,

Jtaoly=—265() (8.79)
m
Laplacian of the output
Kx. 1
§)=—" 8.80
i m(f+¢] (8.50)
Time-domain response
Kx.
HH= { : }mﬂte_“’"t (8.81)
mo,

(c) Under damped case (£<1)
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Poles are: s, =—(w,t jo,

General equation

Kx,
m

y+2lo, y+ @) y= 5(2) (8.82)

Laplacian of the output

Ys) = KX{ ! } (8.83)

m | (s+¢w,+ jo,)(s+Cw,~ jo,)

Time-domain response

Kx .
o) = {—1} e ' sin e t (8.84)

mo,

Normalized impulse-response of a second-order system with different damping factors are shown
graphically as follows.

}Jnderdamped

uh rtically damped
s Overdamped
| N

0.2}

e e . e e e

Normalized response

0.4
0

Solved problems:

3.

A second-order system has an un-damped natural frequency of 100 rad/s and a damping factor of
0.3. The value of the coefficient of the second time derivative (that is m) is 5. If the static
sensitivity is 10, write down the response (do not solve) for a force excitation shown in the figure
in terms of the Duhamel’s integral for the following periods of time: 0<t<t1, t1<t<t2 and t>t2.

Force

i
Time

Solution:

Given, Undamped natural frequency ®,=100 rad/s

Damping factor £ =0.3

Coefficient of the second time derivative m=5
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Static sensitivity K=10

0, =m1-¢> =10031-0.3% =95.39rad/s
Here,

t
F(=F— ;0<t<q

1

F(t) = (,—-t) ;6<t<y
2 h
K | :
W)= J'F(t—n)e‘g“’"’7 sin (w,n )dn
d 0
10F ¢ oo ;
> H)=—— Rl 95.39n)(t—n)d
70 5x95,39fl£6 sin (95.39) (=) d
, ;0<t<y,
=OO¥J. e sin(95.39n)(r—n)dn
1 0
4
= y(t):o'otﬂjle”” sin(95.39n)(l‘—77)d77
Lo it <t<t, and
+ 0'057F'|.e"3°’7 sin(95.39n) (4, —t—-n)dy
tz_li 11
057 F | .
=0 :OO%J.G'%O” sin(95.397)(¢-n)dn
L > 1
+%Ie’30”sin(95.39n)(5—t—n)dn
T

8.9.2. Second-order Time Response Specifications with step input

Y(s) = KX{ ! } (8.85)

m | s(s+¢o, + 05 ~1)(s+ 0, - 0,5 1)
W)= lez {1—e¢‘”nf[cosh(a>u 4;2—1)z+ \/%sinh(wn gz—l)t} (8.86)
Ho=2 {s(swwn vy —jw»} &5
WD = HKsz {1—e_gw"t{coswdt+ﬁsina)d t}} (8.88)
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16 T

14} Underdamping

1.2+

Overdamping

Normalized response
[=]
0
3

8.10. Time Response Specifications with step-input for under-damped case
For under-damped case, the step-response of a second-order is shown as follows

1.8

damping factor=0.1
Natural frequency 2 rad/s =

Overshoot

1.4 |
5%
y(t)ma)j 1 e :: __________ l:
Kx, !
0.8 i |
0.6 i N
0.4 i |
0.2 i (settling time) |
0 i i I i
10 15 20 25
Time, sec
KYA —Co,t )
HO)=—7F11- £ sin(w,t+ @) (8.89)
mo, | \1-¢?
1_ 2
¢=tan" f (8.90)

For this case, different time-domain specifications are described below.
(i) Delay time, ta



64

(i1) Rise time, tr

(ii1) Peak time, tp

(iv) Peak overshoot, Mp
(v) Settling time

For unity step input,
(i)Delay time, ta: It is the time required to reach 50% of output.

1 ch‘”nfd
At)===1- sin(w,t, + @)
2 1- 4*2
fo”?jg (8.91)

(i) Rise time, tr:The time required by the system response to reach from 10% to 90% of the
final value for over-damped case, from 0% to 100% of the final value for under-damped case
and from 5% to 95% of the critically value for over-damped case.

&Sl
At)=1=1- sin(w,t, + @)

1-¢°

~Co,t,
= sin(w,t. +¢)=0
1-¢?
Sl +p=7
—¢=2"9 (8.92)
Wy

(iii) Peak time, tp: The time required by the system response to reach the first maximum value.

() _
dr
i e—{(o”tp
dl1- sin(@,t, + @)
1-¢?
=>— =0
dt
i —Cw,t,

dl - - sin(w,Z, + @)
=>— =0
dt

1- §2

=nm+@;where n=1,2,3,...

= w,l,=nr
nrw

=t,="" (8.93)
Wy

(iv) Peak overshoot, Mp: It is the time required to reach 50% of output.

Mp(%)=1oox@



o,

J1-¢2

M, (%)=100x] 1~

e—@’"fp

M, (%) =100x]| -

NS

o
e V¢

M, (%)=100x | - sm(a)d

1-¢2

_ =
e I-¢*

J1-¢2

M, (%)=100x

sin(w,f, +¢) [=100x L
J1-¢2

sing |=
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sin(w, ¢, + @) — 1]

T
_é‘wni
(7]

sin(@,¢, + @)

g
=
=100%x| ————=sin(7 + @)

g

M, (%) =100x e < (8.94)

(iv) Settling time, t,: It is the time taken by the system response to settle down and stay with in 2%

+5% its final value.
For 2% error band,

For £5% error band,

t, :Ciw (8.96)

Time Specifications
Sl No.
Type Formula
) 1+0.7¢
1 Delay time =
w,
T—
2 Rise time L= ¢
W
. T
3 Peak time l,=—
W
. ﬂg
4 Maximum overshoot M,, (% ) —100x e J1-¢2
Settling ti =
5 ettling time 7 W,
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Solved Problems:

1. Consider the system shown in Figure 1. To improve the performance of the system a feedback is
added to this system, which results in Figure 2. Determine the value of K so that the damping
ratio of the new system is 0.4. Compare the overshoot, rise time, peak time and settling time and
the nominal value of the systems shown in Figures 1 and 2.

R(s) 20 R(s)
1" proewy T T?
Figure 1 Figure 2
Solution:
For Figure 1,
20

Here, @ =20 and 2w, =1

1 1
®,=v20rad/sand { =——= =0.112
J 2w, 2x+/20
For Figure 2,
20
c(s)  G(s) _ s(s+1420K) 20
R(s) 1+G(s) n 20 s +(1+20K)s+20
s(s+1+20K)
Here, @ =20 and 2{w, =1+20K
®, =20 rad/s
But, given that { = 1+20K = 1+20K =04
20, 2~/20
= K=0.128
Transient characteristics of Figures 1 and 2
CharacteristicS Figure 1 Figure 2
Overshoot, M,, 70% 25%
Rise time, t,, sec 0.38 0.48
Peak time, t,, sec 0.71 0.77
Settling time (2%), sec 8 2.24
Steady-state value, ¢, 1.0 1.0
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E ion Cl (Next) Section 1
1.1. Transient Response using MATLAB

Program 1: Find the step response for the following system

Solution:

>> mum=[3 20]
num=

3 20

>> den=[1 5 36]
den=

1 5 36

>>sys=tf(num,den)
Transfer function:
3s+20

§"2+5s+36
>>step(sys)

c(s) 20
R(s) & +4s+25

Program 2: Find the step response for the following system

Solution:
>> mum=[20]
num=

20
>> den=[1 425]
den=

1 4 25
>>gys=tf(num,den)
Transfer function:
20

§"2+4s+25

>>step(sys)
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2. Stability
2.1. Concept of stability

Stability is a very important characteristic of the transient performance of a system. Any working
system is designed considering its stability. Therefore, all instruments are stable with in a boundary of
parameter variations.

A linear time invariant (LTI) system is stable if the following two conditions are satisfied.
(i) Notion-1: When the system is excited by a bounded input, output is also bounded.

Proof:

A SISO system is given by

C(s s"+hs" 4.+ b
( ):G(S):bo 11+bl 11—1+ i . (91)
R(s) ays" +as"" +..+ a,
So,
c(t)za_l[G(s)R(s)] 9.2)
Using convolution integral method
c(t)zj.g(f)r(t—r)dr 9.3)
0
g(t)=0a"'G(s)=impulse response of the system
Taking absolute value in both sides,
|c(t)|= jg(r)r(f—r)dr 9.4
0

Since, the absolute value of integral is not greater than the integral of absolute value of the integrand

0

|c(t)| S“g(f)r(t—r)dd

0

3|c(t)| S“g(f)r(t—1)|dr 9.5)

0

= |e(0)|< [|e()r(e=7)

0
Let, r(t) and c(t) are bounded as follows.
r(t)| £ M, <o
[r(e) < M, 0.6
|c( t)| <M, <o

Then,
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0

|c(t)|$MI|g(r)|drS]\42 9.7
0

Hence, first notion of stability is satisfied if j | g(r)|d7: is finite or integrable.
0

(i1) Notion-2: In the absence of the input, the output tends towards zero irrespective of initial
conditions. This type of stability is called asymptotic stability.

2.2. Effect of location of poles on stability

Pole-zero map | Normalized response

Over-damped close-loop poles

Overdamped system

jn $ plane

Normalized response

Critically damped close-loop poles

Pole-zero map Normalized response

L1 5 plaM Gritically damped syatem

Normalized respanse
° °
-

Under-dampedclose-loop poles

Pole-zero map | Normalized response
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Negatively overdamped system

< § plane

=

- |
F

o 0.1 0.2 0.3 0.4 05 0.6 07 0.4 040 1

2.3. Closed-loop poles on the imaginary axis

Closed-loop can be located by replace the denominator of the close-loop response with s=jo.

Example:

1. Determine the close-loop poles on the imaginary axis of a system given below.

K
) = s(s+1)

Solution:

Characteristics equation, B(s)=5§" +s+ K =0

Replacing s= jw

B jo)=(jo)’ +(jo)+K=0

=>(K-')+ jo=0

Comparing real and imaginary terms of L.H.S. with real and imaginary terms of R.H.S., we get

a)=\/fandco=0

Therefore, Closed-loop poles do not cross the imaginary axis.

2. Determinetheclose the imaginary axis of a system given below.
B(s)=5 +65 +8s+K=0.

Solution:

Characteristics equation,

B jo) =(jo) +6(jo)’ +8 jo+ K=0

=(K—60") + j8w—w')=0

Comparing real and imaginary terms of L.H.S. with real and imaginary terms of R.H.S., we get
® = t~/8 radsand K = 60> =48

Therefore, Close-loop poles cross the imaginary axis for K>48.



