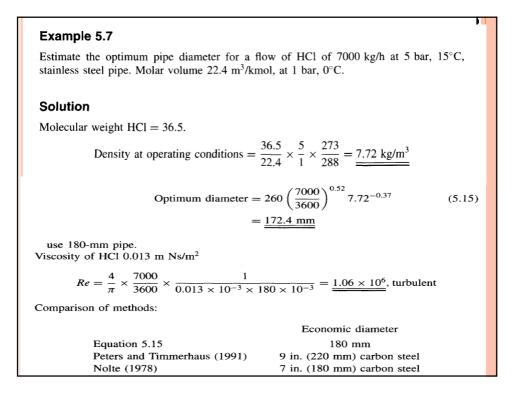
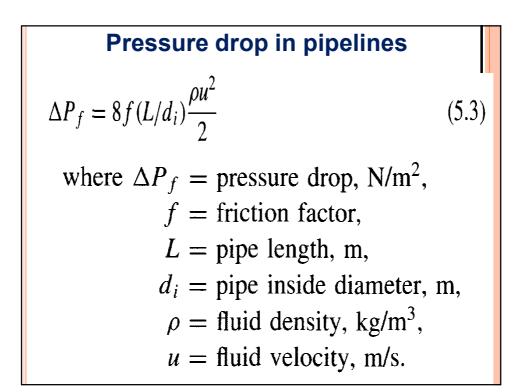


•9/11/1282

PIPE SIZE SELECTION Typical pipe velocities and allowable pressure drops, which can be used to estimate pipe sizes, are given below:					
pipe sizes, are given below.					
	Velocity m/s	$\Delta P \text{ kPa/m}$			
Liquids, pumped (not viscous)	1-3	0.5			
Liquids, gravity flow		0.05			
Gases and vapours	15-30	0.02 per cent of			
-		line pressure			
High-pressure steam, >8 bar	30-60	_			
Rase (1953) gives expressions for design velocities in terms of the pipe diameter. His expressions, converted to SI units, are:					
Pump discharge	0.06d + 0.4	m/s			
Pump suction	0.02d + 0.1				
Steam or vapour	0.2d m/s				

Pipe Wall thickness: pipe schedule The British Standard 5500 gives the following formula for pipe thickness: $t = \frac{Pd}{20\sigma_d + P}$ (5.8) where *P* = internal pressure, bar, *d* = pipe od, mm, σ_d = design stress at working temperature, N/mm². Pipes are often specified by a schedule number (based on the thin cylinder formula). The schedule number is defined by: Schedule number = $\frac{P_s \times 1000}{\sigma_s}$ (5.9) *P_s* = safe working pressure, lb/in² (or N/mm²), σ_s = safe working stress, lb/in² (or N/mm²). Schedule 40 pipe is commonly used for general purposes.


Example 5.5


Estimate the safe working pressure for a 4 in. (100 mm) dia., schedule 40 pipe, carbon steel, butt welded, working temperature 100° C. The safe working stress for butt welded steel pipe up to 120° C is 6000 lb/in² (41.4 N/mm²).

Solution

$$P_s = \frac{\text{(schedule no.)} \times \sigma_s}{1000} = \frac{40 \times 6000}{1000} = \underline{240 \text{ lb/in}^2} = \underline{1656 \text{ kN/m}^2}$$

Example 5.6		
Estimate the optimum pipe diameter for a water steel pipe will be used. Density of water 1000 kg/		n
Solution		
d, optimum = $293 \times (10)^{0.5}$	³ 1000 ^{-0.37} (5.14	1)
= <u>77.1 mm</u>		
use 80-mm pipe.		
Viscosity of water at $20^{\circ}C = 1.1 \times 10^{-3} \text{ Ns/m}^2$,		
$Re = \frac{4G}{\pi\mu d} = \frac{4 \times 10}{\pi \times 1.1 \times 10^{-3} \times 80}$	$\frac{1}{10^{-3}} = 1.45 \times 10^5$	
>4000, so flow is turbulent. Comparison of methods:		
	Economic diameter	
Equation 5.14	180 mm	
Peters and Timmerhaus (1991)		
	80 mm	

Material	Absolute roughness, mm
Drawn tubing	0.0015
Commercial steel pipe	0.046
Cast iron pipe	0.26
Concrete pipe	0.3 to 3.0

Fitting or valve	K, number of velocity heads	number of equivalen pipe diameters
45° standard elbow	0.35	15
45° long radius elbow	0.2	10
90° standard radius elbow	0.6-0.8	30-40
90° standard long elbow	0.45	23
90° square elbow	1.5	75
Tee-entry from leg	1.2	60
Tee-entry into leg	1.8	90
Union and coupling	0.04	2
Sharp reduction (tank outlet)	0.5	25
Sudden expansion (tank inlet)	1.0	50
Gate valve		
fully open	0.15	7.5
1/4 open	16	800
1/2 open	4	200
3/4 open	1	40
Globe valve, bevel seat-		
fully open	6	300
1/2 open	8.5	450
Plug valve - open	0.4	18

Example 5.1

A pipeline connecting two tanks contains four standard elbows, a plug valve that is fully open and a gate valve that is half open. The line is commercial steel pipe, 25 mm internal diameter, length 120 m.

The properties of the fluid are: viscosity 0.99 mNM⁻² s, density 998 kg/m³. Calculate the total pressure drop due to friction when the flow rate is 3500 kg/h.

Solution

Cross-sectional area of pipe = $\frac{\pi}{4} (25 \times 10^{-3})^2 = 0.491 \times 10^{-3} \text{m}^2$

Fluid velocity,
$$u = \frac{3500}{3600} \times \frac{1}{0.491 \times 10^{-3}} \times \frac{1}{998} = 1.98 \text{ m/s}$$

Reynolds number, $Re = (998 \times 1.98 \times 25 \times 10^{-3})/0.99 \times 10^{-3}$

 $=49,900=5\times10^{4}$

(5.4)

Absolute roughness commercial steel pipe, Table 5.2 = 0.046 mm

Relative roughness = $0.046/(25 \times 10^{-3}) = 0.0018$, round to 0.002 From friction factor chart, Figure 5.7, f = 0.0032

Miscellaneous losses

fitting/valve	number of velocity heads, K	equivalent pipe diameters
entry	0.5	25
elbows	(0.8×4)	(40×4)
globe valve, open	6.0	300
gate valve, 1/2 open	4.0	200
exit	1.0	50
Total	14.7	735

1 Method 1, velocity heads A velocity head $= u^2/2g = 1.98^2/(2 \times 9.8) = 0.20$ m of liquid. Head $loss = 0.20 \times 14.7 = 2.94$ m as pressure = $2.94 \times 998 \times 9.8 = 28,754 \text{ N/m}^2$ Friction loss in pipe, $\Delta P_f = 8 \times 0.0032 \frac{(120)}{(25 \times 10^{-3})} 998 \times \frac{1.98^2}{2}$ $= 240,388 \text{ N/m}^2$ (5.3) Total pressure = $28,754 + 240,388 = 269,142 \text{ N/m}^2 = 270 \text{ kN/m}^2$ Method 2, equivalent pipe diameters Extra length of pipe to allow for miscellaneous losses $= 735 \times 25 \times 10^{-3} = 18.4 \text{ m}$ So, total length for ΔP calculation = 120 + 18.4 = 138.4 m $\Delta P_f = 8 \times 0.0032 \frac{(138.4)}{(25 \times 10^{-3})} 998 \times \frac{1.98^2}{2} = 277,247 \text{ N/m}^2$ = $\frac{277 \text{ kN/m}^2}{277 \text{ kN/m}^2}$ (5.3)