

Net positive suction Head (NPSH)

The pressure at the inlet to a pump must be high enough to prevent cavitation occurring in the pump. Cavitation occurs when bubbles of vapour, or gas, form in the pump casing. Vapour bubbles will form if the pressure falls below the vapour pressure of the liquid.

The net positive suction head available (*NPSHavail*) is the pressure at the pump suction, above the vapour pressure of the liquid, expressed as head of liquid.

The net positive head required ($NPSH_{reqd}$) is a function of the design parameters of the pump, and will be specified by the pump manufacturer. As a general guide, the NPSH should be above 3 m for pump capacities up to 100 m3/h, and 6 m above this capacity. Special impeller designs can be used to overcome problems of low suction head; see Doolin (1977).

The net positive head available is given by the following equation:

$$NPSH_{avail} = P/\rho + H - P_f/\rho - P_v/\rho$$
(5.7)

where $NPSH_{avail}$ = net positive suction head available at the pump suction, m,

P = the pressure above the liquid in the feed vessel, N/m²,

H = the height of liquid above the pump suction, m,

 P_f = the pressure loss in the suction piping, N/m²,

 P_v = the vapour pressure of the liquid at the pump suction, N/m²,

 ρ = the density of the liquid at the pump suction temperature, kg/m³.

The inlet piping arrangement must be designed to ensure that $NPSH_{avail}$ exceeds $NPSH_{reqd}$ under all operating conditions.

Example 5.4

Liquid chlorine is unloaded from rail tankers into a storage vessel. To provide the necessary NPSH, the transfer pump is placed in a pit below ground level. Given the following information, calculate the NPSH available at the inlet to the pump, at a maximum flow-rate of 16,000 kg/h.

The total length of the pipeline from the rail tanker outlet to the pump inlet is 50 m. The vertical distance from the tank outlet to the pump inlet is 10 m. Commercial steel piping, 50 mm internal diameter, is used.

Miscellaneous friction losses due to the tanker outlet constriction and the pipe fittings in the inlet piping, are equivalent to 1000 equivalent pipe diameters. The vapour pressure of chlorine at the maximum temperature reached at the pump is 685 kN/m^2 and its density and viscosity, 1286 kg/m^3 and $0.364 \text{ mNm}^{-2}\text{s}$. The pressure in the tanker is 7 bara.

Solution		
Friction losses		
Miscellaneous losses	$= 1000 \times 50 \times 10^{-3} = 50$ m of pipe	
Total length of inlet piping	= 50 + 50 = 100 m	
Relative roughness, e/d	= 0.046/50 = 0.001	
Pipe cross-sectional area	$=\frac{\pi}{4}(50\times10^{-3})^2=1.96\times10^{-3} \text{ m}^2$	
Velocity, u	$= \frac{16,000}{3600} \times \frac{1}{1.96 \times 10^{-3}} \times \frac{1}{1286} = 1.76 \text{ m/s}$	
Reynolds number	$=\frac{1286\times1.76\times50\times10^{-3}}{0.364\times10^{-3}}=3.1\times10^{5}$	(5.4)
Friction factor from Figure 5.7, f	F = 0.00225	
$\Delta P_f = 8 \times 0.00225 - 0.0025 - 0$	$\frac{(100)}{50 \times 10^{-3})} \times 1286 \times \frac{1.76^2}{2} = 71,703 \text{ N/m}^2$	(5.3)
$NPSH = \frac{7 \times 10^5}{1286 \times 9.8} +$	$-10 - \frac{71.703}{1286 \times 9.8} - \frac{685 \times 10^{-3}}{1286 \times 9.8}$	(5.7)
= 55.5 + 10 - 5	5.7 - 54.4 = 5.4 m	

		Table	5.4. L	ine calc	ulation form	n (Example 5.4)			
			Pum	p and lir	e calculatio	n sheet			
Job no.	Sheet no.	By	RKS,	7/7/79		Checked			
4415A	1								
Fluid			ODCB			DISCHARGE CA	LCULATIC	0N	
Temperatu	Temperature °C 20		L	Line size mm 40					
Density kg/m ³ 1306			Flow	Norm.	Max.	Units			
Viscosity	mNs/m ²		0.9		u2	Velocity	1.7	2.0	m/s
Normal flow kg/s 2.78		Δf_2	Friction loss	1.0	1.5	kPa/m			
Design max. flow kg/s 3.34		L ₂	Line length	54	—	m			
					$\Delta f_2 L_2$	Line loss	54		kPa
	SUCTION CAL	CULATIO	N			Orifice	15	22	kPa
Li	ne size mm		40		30%	Control valve	140	200	kPa
	Flow	Norm.	Max.	Units		Equipment			
uı	Velocity	1.7	2.0	m/s]	(a) Heat ex.	70	100	kPa
Δf_1	Friction loss	1.0	1.5	kPa/m]	(b)	-		kPa
L	Line length	3.4	_	m	1	(c)	—		kPa
$\Delta f_1 L_1$	Line loss	3.4	5.1	kPa		(6) Dynamic loss	279	403	kPa
$\rho u_1^2/2$	Entrance	1.9	2.7	kPa					
(40 kPa)	Strainer	—	—	kPa	Z2	Static head	6.5	—	m
	(1) Sub-total	5.3	7.8	kPa	$\rho g z_2$		85	85	kPa
						Equip. press (max)	200	200	kPa
z ₁	Static head	1.5	1.5	m		Contingency	None	None	kPa
ρgz ₁		19.6	19.6	kPa		(7) Sub-total	285	285	kPa
	Equip. press	100	100	kPa	(7) + (6)	Discharge press.	564	685	kPa
	(2) Sub-total	119.6	119.6	kPa	(3)	Suction press.	114.3	111.8	kPa
						(8) Diff. press.	450	576	kPa
(2) - (1)	(3) Suction press	114.3	111.8	kPa	(8)/og		34	44	m
	(4) VAP. PRESS.	0.1	0.1	kPa	(0) PB		51		
(3) - (4)	(5) NPSH	114.2	111.7	kPa	Valve/(6)	Control valve			
(5)/pg		8.7	8.6	m		% Dyn. loss	50%		

	Pump Specification				
Туре:	Centrifugal				
No. stages:	1				
Single/Double suction:	Single				
Vertical/Horizontal mounting:	Horizontal				
Impeller type:	Closed				
Casing design press.:	600 kPa				
design temp.:	20°C				
Driver:	Electric, 440 V, 50 c/s 3-phase.				
Seal type:	Mechanical, external flush				
Max. flow:	$7.7 \text{ m}^3/\text{h}$				
Diff. press.:	600 kPa (47 m, water)				